A059409 a(n) = 4^n * (2^n - 1).
0, 4, 48, 448, 3840, 31744, 258048, 2080768, 16711680, 133955584, 1072693248, 8585740288, 68702699520, 549688705024, 4397778075648, 35183298347008, 281470681743360, 2251782633816064, 18014329790005248, 144114913197948928, 1152920405095219200
Offset: 0
Examples
(4,48,448,3840,...) = (8,64,512,4096,...) - (2,12,56,240,...) - (1,3,7,15,...) - (1,1,1,1,...)
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.
Links
- Harry J. Smith, Table of n, a(n) for n = 0..100
- Index entries for linear recurrences with constant coefficients, signature (12,-32).
Programs
-
GAP
List([0..100], n->4^n * (2^n - 1)); # Muniru A Asiru, Jan 29 2018
-
Magma
[4^n*(2^n - 1): n in [0..40]]; // Vincenzo Librandi, Apr 26 2011
-
Maple
seq(4^n * (2^n - 1), n=0..20); # Muniru A Asiru, Jan 29 2018
-
Mathematica
Table[4^n*(2^n - 1), {n,0,30}] (* G. C. Greubel, Jan 29 2018 *) LinearRecurrence[{12,-32},{0,4},20] (* Harvey P. Dale, Oct 14 2019 *)
-
PARI
a(n) = { 4^n*(2^n - 1) } \\ Harry J. Smith, Jun 26 2009
Formula
Equals J_n(8) (see A059379).
a(n) = 4*A016152(n).
G.f.: 4*x / ( (8*x-1)*(4*x-1) ). - R. J. Mathar, Nov 23 2018
Sum_{n>0} 1/a(n) = E - 4/3, where E is the Erdős-Borwein constant (A065442). - Peter McNair, Dec 19 2022
Comments