cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A095050 Numbers such that all ten digits are needed to write all positive divisors in decimal representation.

Original entry on oeis.org

108, 216, 270, 304, 306, 312, 324, 360, 380, 406, 432, 450, 504, 540, 570, 608, 612, 624, 630, 648, 654, 702, 708, 714, 720, 728, 756, 760, 780, 810, 812, 864, 870, 900, 910, 912, 918, 924, 936, 945, 954, 972, 980, 1008, 1014, 1026, 1032, 1036, 1038
Offset: 1

Views

Author

Reinhard Zumkeller, May 28 2004

Keywords

Comments

A095048(a(n)) = 10.
Numbers n such that A037278(n), A176558(n) and A243360(n) contain 10 distinct digits. - Jaroslav Krizek, Jun 19 2014
Once a number is in the sequence, then all its multiples will be there too. The list of primitive terms begin: 108, 270, 304, 306, 312, 360, 380, ... - Michel Marcus, Jun 20 2014
Pandigital numbers A050278 and A171102 are subsequences. - Michel Marcus, May 01 2020

Examples

			Divisors of 108 are: [1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54, 108] where all digits can be found.
		

Crossrefs

Cf. A095048, A059436 (subsequence), A206159.
Cf. A243543 (the smallest number m whose list of divisors contains n distinct digits).
Sequences of numbers n such that the list of divisors of n contains k distinct digits for 1 <= k <= 10: k = 1: A243534; k = 2: A243535; k = 3: A243536; k = 4: A243537; k = 5: A243538; k = 6: A243539; k = 7: A243540; k = 8: A243541; k = 9: A243542; k = 10: A095050. - Jaroslav Krizek, Jun 19 2014

Programs

  • Haskell
    import Data.List (elemIndices)
    a095050 n = a095050_list !! (n-1)
    a095050_list = map (+ 1) $ elemIndices 10 $ map a095048 [1..]
    -- Reinhard Zumkeller, Feb 05 2012
    
  • Maple
    q:= n-> is({$0..9}=map(x-> convert(x, base, 10)[], numtheory[divisors](n))):
    select(q, [$1..2000])[];  # Alois P. Heinz, Oct 28 2021
  • Mathematica
    Select[Range@2000, 1+Union@@IntegerDigits@Divisors@# == Range@10 &] (* Hans Rudolf Widmer, Oct 28 2021 *)
  • PARI
    isok(m)=my(d=divisors(m), v=[1]); for (k=2, #d, v = Set(concat(v, digits(d[k]))); if (#v == 10, return (1));); #v == 10; \\ Michel Marcus, May 01 2020
    
  • Python
    from sympy import divisors
    def ok(n):
        digits_used = set()
        for d in divisors(n):
            digits_used |= set(str(d))
        return len(digits_used) == 10
    print([k for k in range(1040) if ok(k)]) # Michael S. Branicky, Oct 28 2021

Formula

a(n) ~ n. - Charles R Greathouse IV, Nov 16 2022

A095048 Number of distinct digits needed to write all positive divisors of n in decimal representation.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 1, 5, 2, 4, 3, 5, 2, 6, 2, 5, 4, 2, 3, 6, 3, 4, 5, 5, 3, 6, 2, 6, 2, 5, 4, 7, 3, 5, 3, 6, 2, 6, 3, 3, 5, 5, 3, 6, 4, 4, 4, 6, 3, 9, 2, 7, 5, 5, 3, 7, 2, 4, 6, 6, 4, 4, 3, 7, 5, 7, 2, 8, 3, 5, 5, 8, 2, 7, 3, 7, 6, 4, 3, 7, 4, 6, 6, 4, 3, 9, 4, 6, 3, 5, 3, 7, 3, 6, 3, 5, 2, 8
Offset: 1

Views

Author

Reinhard Zumkeller, May 28 2004

Keywords

Comments

a(n) <= 10, a(A095050(n)) = 10.
a(A206159(n)) <= 2. - Reinhard Zumkeller, Feb 05 2012
Almost all (in the sense of natural density) terms of this sequence are equal to 10. - Charles R Greathouse IV, Nov 16 2022

Examples

			Set of divisors of n=10: {1,2,5,10}, therefore a(10) = #{0,1,2,5} = 4.
Set of divisors of n=16: {1,2,4,8,16}, therefore a(16)=#{1,2,4,6,8} = 5.
		

Crossrefs

Programs

  • Haskell
    import Data.List (group, sort)
    a095048 = length . group . sort . concatMap show . a027750_row
    -- Reinhard Zumkeller, Feb 05 2012
    
  • Maple
    A095048 := proc(n)
        local digset ;
        digset := {} ;
        for d in numtheory[divisors](n) do
            digset := digset union convert(convert(d,base,10),set) ;
        end do:
        nops(digset) ;
    end proc:
    seq(A095048(n),n=1..80) ; # R. J. Mathar, May 13 2022
  • PARI
    a(n) = my(d = divisors(n), s = 0); for(i = 1, #d, v = digits(d[i]); for(j = 1, #v, s = bitor(s, 1<David A. Corneth, Nov 16 2022
  • Python
    from sympy import divisors
    def a(n):
        s = set("1"+str(n))
        if len(s) == 10: return 10
        for d in divisors(n, generator=True):
            s |= set(str(d))
            if len(s) == 10: return 10
        return len(s)
    print([a(n) for n in range(1, 99)]) # Michael S. Branicky, Nov 16 2022
    

A345390 Numbers whose set of divisors contains every digit at least twice.

Original entry on oeis.org

540, 720, 760, 810, 918, 1080, 1140, 1170, 1260, 1404, 1440, 1512, 1520, 1530, 1560, 1620, 1740, 1800, 1820, 1824, 1836, 1872, 1890, 1908, 1960, 2016, 2028, 2052, 2070, 2072, 2088, 2106, 2112, 2124, 2142, 2156, 2160, 2184, 2208, 2280, 2340, 2380, 2430, 2508, 2520
Offset: 1

Views

Author

Tanya Khovanova, Jun 17 2021

Keywords

Comments

Compare to A095050: Numbers such that all ten digits are needed to write all positive divisors in decimal representation.

Examples

			The divisors of 918 are 1, 2, 3, 6, 9, 17, 18, 27, 34, 51, 54, 102, 153, 306, 459, and 918. Every digit appears at least twice. Thus, 918 is in this sequence.
		

Crossrefs

Programs

  • Maple
    q:= n-> (p-> is(min(seq(coeff(p, x, j), j=0..9))>1))(add(x^i, i=
         map(d-> convert(d, base, 10)[], [numtheory[divisors](n)[]]))):
    select(q, [$10..2600])[];  # Alois P. Heinz, Apr 21 2022
  • Mathematica
    Select[Range[3000], Length[Transpose[Tally[Flatten[IntegerDigits[Divisors[#]]]]][[2]]] == 10 && Min[Transpose[Tally[Flatten[IntegerDigits[Divisors[#]]]]][[2]]] > 1 &]
  • Python
    from sympy import divisors
    def ok(n):
        digits_used = {d:0 for d in "0123456789"}
        for div in divisors(n, generator=True):
            for d in str(div): digits_used[d] += 1
            if all(digits_used[d] > 1 for d in "0123456789"): return True
        return False
    print([k for k in range(2521) if ok(k)]) # Michael S. Branicky, Jun 25 2022

A175507 Numbers such that each digit from 0 to 9 appears at least 7 times in the digits of their divisors.

Original entry on oeis.org

7980, 8190, 9360, 10920, 11760, 11880, 12870, 13230, 13860, 14820, 15960, 16380, 16740, 17640, 17940, 18216, 18270, 18360, 18720, 18810, 18900, 19040, 19080, 19140, 19656, 19740, 20196, 20580, 20790, 20880, 21168, 21560, 21840, 22176
Offset: 1

Views

Author

R. J. Mathar, Jun 02 2010

Keywords

Examples

			5460 is not in the sequence because the divisors, 1, 2, 3, 4, 5, 6, 7, 10, 12, 13, 14, 15, 20, 21, 26, 28, 30, 35, 39, 42, 52, 60, 65, 70, 78, 84, 91, 105, 130, 140, 156, 182, 195, 210, 260, 273, 364, 390, 420, 455, 546, 780, 910, 1092, 1365, 1820, 2730, 5460, contain the digit 7 only 6 times (namely once in 7, 70, 78, 273, 780 and 2730), which is not enough.
		

Crossrefs

Cf. A059436.

Programs

  • Mathematica
    fQ[n_] := Block[{s = Transpose@ Tally[ Sort[ Flatten[ IntegerDigits@# & /@ Divisors@ n]]]}, First@ s == {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} && Min@ Last@ s > 6]; k = 1; lst = {}; While[k < 22319, If[ fQ@k, AppendTo[lst, k]]; k++ ]; lst (* Robert G. Wilson v, Jul 31 2010 *)

Extensions

More terms from Robert G. Wilson v, Jul 31 2010

A353066 Numbers whose set of divisors contains every digit at least three times.

Original entry on oeis.org

1140, 1890, 2280, 2340, 2610, 2660, 2700, 2808, 2880, 2940, 2970, 3420, 3480, 3510, 3540, 3600, 3654, 3672, 3780, 3870, 3920, 3952, 3990, 4032, 4140, 4320, 4368, 4380, 4410, 4560, 4590, 4680, 4740, 4760, 4770, 4860, 4896, 4940, 4950, 5130, 5220, 5320, 5400, 5454
Offset: 1

Views

Author

Tanya Khovanova, Apr 21 2022

Keywords

Comments

Every multiple of a term is also a term.

Examples

			The divisors of 1140 are: 1, 2, 3, 4, 5, 6, 10, 12, 15, 19, 20, 30, 38, 57, 60, 76, 95, 114, 190, 228, 285, 380, 570, 1140. Digits tally from 0 to 9: 8, 10, 6, 4, 3, 6, 3, 3, 4, 3. The minimum is 3, thus, 1140 is in this sequence.
		

Crossrefs

Cf. A059436 (at least n times).
Subsequence of A095050 (at least once) and of A345390 (at least twice).

Programs

  • Maple
    q:= n-> (p-> is(min(seq(coeff(p, x, j), j=0..9))>2))(add(x^i, i=
         map(d-> convert(d, base, 10)[], [numtheory[divisors](n)[]]))):
    select(q, [$10..5555])[];  # Alois P. Heinz, Apr 21 2022
  • Mathematica
    Select[Range[10000], Length[Tally[Flatten[IntegerDigits[Divisors[#]]]]] == 10 && Min[Transpose[Tally[Flatten[IntegerDigits[Divisors[#]]]]][[2]]] >= 3 &]
  • PARI
    upto(n) = { my(v = vector(n, i, -1)); for(i = 1, n, if(v[i] == -1, c = is(i); if(c == 1, v[i] = 1; for(j = 1, n\i, v[i*j] = 1; ) , v[i] = 0 ) ) ); Vec(select(x->x==1,v,1)) }
    is(n) = { my(v = vector(10, i, 3), d = divisors(n), todo = 30, i, j); for(i = 1, #d, dd = digits(d[i]); for(j = 1, #dd, if(v[dd[j]+1] > 0, v[dd[j]+1]--; todo--; if(todo <= 0, return(1) ) ) ) ); 0 } \\ David A. Corneth, Jul 11 2022
  • Python
    from sympy import divisors
    def ok(n):
        counts = [0]*10
        for d in divisors(n, generator=True):
            for di in str(d): counts[int(di)] += 1
            if min(counts) > 2: return True
        return False
    print([k for k in range(5455) if ok(k)]) # Michael S. Branicky, Apr 21 2022
    

A273094 a(n) is the smallest number whose divisors contain each 0..9 digit exactly n times.

Original entry on oeis.org

203457869, 206893558, 507083396, 506815954, 102668478970, 895233580, 26475394180, 887692930, 10708845258, 13306408052, 155503137452, 963213572, 803503960576, 40349550036, 203264657940
Offset: 1

Views

Author

Giovanni Resta, May 15 2016

Keywords

Comments

We also have a(18)=18174907880, a(19)=81418065258, a(20)=257678968520, and a(23)=529539876740. The missing terms are all greater than 10^12.

Examples

			a(1)=203457869, whose divisors are 1 and 203457869 itself. a(2)=206893558, whose divisors, i.e., 1, 2, 103446779, and 206893558, contain each digit 2 times.
		

Crossrefs

Showing 1-6 of 6 results.