cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A002321 Mertens's function: Sum_{k=1..n} mu(k), where mu is the Moebius function A008683.

Original entry on oeis.org

1, 0, -1, -1, -2, -1, -2, -2, -2, -1, -2, -2, -3, -2, -1, -1, -2, -2, -3, -3, -2, -1, -2, -2, -2, -1, -1, -1, -2, -3, -4, -4, -3, -2, -1, -1, -2, -1, 0, 0, -1, -2, -3, -3, -3, -2, -3, -3, -3, -3, -2, -2, -3, -3, -2, -2, -1, 0, -1, -1, -2, -1, -1, -1, 0, -1, -2, -2, -1, -2, -3, -3, -4, -3, -3, -3, -2, -3, -4, -4, -4
Offset: 1

Views

Author

Keywords

Comments

Partial sums of the Moebius function A008683.
Also determinant of n X n (0,1) matrix defined by A(i,j)=1 if j=1 or i divides j.
The first positive value of Mertens's function for n > 1 is for n = 94. The graph seems to show a negative bias for the Mertens function which is eerily similar to the Chebyshev bias (described in A156749 and A156709). The purported bias seems to be empirically approximated to - (6 / Pi^2) * (sqrt(n) / 4) (by looking at the graph) (see MathOverflow link, May 28 2012) where 6 / Pi^2 = 1 / zeta(2) is the asymptotic density of squarefree numbers (the squareful numbers having Moebius mu of 0). This would be a growth pattern akin to the Chebyshev bias. - Daniel Forgues, Jan 23 2011
All integers appear infinitely often in this sequence. - Charles R Greathouse IV, Aug 06 2012
Soundararajan proves that, on the Riemann Hypothesis, a(n) << sqrt(n) exp(sqrt(log n)*(log log n)^14), sharpening the well-known equivalence. - Charles R Greathouse IV, Jul 17 2015
Balazard & De Roton improve this (on the Riemann Hypothesis) to a(n) << sqrt(n) exp(sqrt(log n)*(log log n)^k) for any k > 5/2, where the implied constant in the Vinogradov symbol depends on k. Saha & Sankaranarayanan reduce the exponent to 5/4 on additional hypotheses. - Charles R Greathouse IV, Feb 02 2023

Examples

			G.f. = x - x^3 - x^4 - 2*x^5 - x^6 - 2*x^7 - 2*x^8 - 2*x^9 - x^10 - 2*x^11 - 2*x^12 - ...
		

References

  • E. Landau, Vorlesungen über Zahlentheorie, Chelsea, NY, Vol. 2, p. 157.
  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, pp. 7-10.
  • F. Mertens, "Über eine zahlentheoretische Funktion", Akademie Wissenschaftlicher Wien Mathematik-Naturlich Kleine Sitzungsber, IIa 106, (1897), p. 761-830.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section VI.1.
  • Biswajyoti Saha and Ayyadurai Sankaranarayanan, On estimates of the Mertens function, International Journal of Number Theory, Vol. 15, No. 02 (2019), pp. 327-337.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • J. von zur Gathen and J. Gerhard, Modern Computer Algebra, Cambridge, 1999, see p. 482.

Crossrefs

First column of A134541.
First column of A179287.

Programs

  • Haskell
    import Data.List (genericIndex)
    a002321 n = genericIndex a002321_list (n-1)
    a002321_list = scanl1 (+) a008683_list
    -- Reinhard Zumkeller, Jul 14 2014, Dec 26 2012
    
  • Magma
    [&+[MoebiusMu(k): k in [1..n]]: n in [1..81]]; // Bruno Berselli, Jul 12 2021
  • Maple
    with(numtheory); A002321 := n->add(mobius(k),k=1..n);
  • Mathematica
    Rest[ FoldList[ #1+#2&, 0, Array[ MoebiusMu, 100 ] ] ]
    Accumulate[Array[MoebiusMu,100]] (* Harvey P. Dale, May 11 2011 *)
  • PARI
    a(n) = sum( k=1, n, moebius(k))
    
  • PARI
    a(n) = if( n<1, 0, matdet( matrix(n, n, i, j, j==1 || 0==j%i)))
    
  • PARI
    a(n)=my(s); forsquarefree(k=1,n, s+=moebius(k)); s \\ Charles R Greathouse IV, Jan 08 2018
    
  • Python
    from sympy import mobius
    def M(n): return sum(mobius(k) for k in range(1,n + 1))
    print([M(n) for n in range(1, 151)]) # Indranil Ghosh, Mar 18 2017
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A002321(n):
        if n == 0:
            return 0
        c, j = n, 2
        k1 = n//j
        while k1 > 1:
            j2 = n//k1 + 1
            c += (j2-j)*A002321(k1)
            j, k1 = j2, n//j2
        return j-c # Chai Wah Wu, Mar 30 2021
    

Formula

Assuming the Riemann hypothesis, a(n) = O(x^(1/2 + eps)) for every eps > 0 (Littlewood - see Landau p. 161).
Lambert series: Sum_{n >= 1} a(n)*(x^n/(1-x^n)-x^(n+1)/(1-x^(n+1))) = x and -1/x. - Mats Granvik, Sep 09 2010 and Sep 23 2010
a(n)+2 = A192763(n,1) for n>1, and A192763(1,k) for k>1 (conjecture). - Mats Granvik, Jul 10 2011
Sum_{k = 1..n} a(floor(n/k)) = 1. - David W. Wilson, Feb 27 2012
a(n) = Sum_{k = 1..n} tau_{-2}(k) * floor(n/k), where tau_{-2} is A007427. - Enrique Pérez Herrero, Jan 23 2013
a(n) = Sum_{k=1..A002088(n)} exp(2*Pi*i*A038566(k)/A038567(k-1)) where i is the imaginary unit. - Eric Desbiaux, Jul 31 2014
Schoenfeld proves that |a(n)| < 5.3*n/(log n)^(10/9) for n > 1. - Charles R Greathouse IV, Jan 17 2018
G.f. A(x) satisfies: A(x) = (1/(1 - x)) * (x - Sum_{k>=2} (1 - x^k) * A(x^k)). - Ilya Gutkovskiy, Aug 11 2021

A059572 From Mertens's conjecture (2): floor(sqrt(n)) - Mertens's function A002321(n).

Original entry on oeis.org

0, 1, 2, 3, 4, 3, 4, 4, 5, 4, 5, 5, 6, 5, 4, 5, 6, 6, 7, 7, 6, 5, 6, 6, 7, 6, 6, 6, 7, 8, 9, 9, 8, 7, 6, 7, 8, 7, 6, 6, 7, 8, 9, 9, 9, 8, 9, 9, 10, 10, 9, 9, 10, 10, 9, 9, 8, 7, 8, 8, 9, 8, 8, 9, 8, 9, 10, 10, 9, 10, 11, 11, 12, 11, 11, 11, 10, 11, 12, 12, 13, 12, 13
Offset: 1

Views

Author

N. J. A. Sloane, Feb 16 2001

Keywords

Comments

Mertens conjectured that |A002321(n)| < sqrt(n) for all n > 1. This is now known to be false.

References

  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section VI.2.

Crossrefs

Programs

  • Mathematica
    Table[Floor[Sqrt[n]] - Plus @@ MoebiusMu[Range[n]], {n, 1, 80}] (* Carl Najafi, Aug 17 2011 *)

A179285 Triangle T(n,k) read by rows, defined by: T(1,1)=1; n > 1 and k=1: T(n,1) = T(n-1,2) + T(n,2); k=2: T(n,2) = A000196(n-1); k > 2: T(n,k) = (Sum_{i=1..k-1} T(n-i,k-1)) - (Sum_{i=1..k-1} T(n-i,k)).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 3, 2, 0, 1, 1, 4, 2, 2, 0, 1, 1, 4, 2, 2, 1, 0, 1, 1, 4, 2, 0, 2, 1, 0, 1, 1, 4, 2, 2, 1, 1, 1, 0, 1, 1, 5, 3, 2, 0, 1, 1, 1, 0, 1, 1, 6, 3, 1, 1, 1, 0, 1, 1, 0, 1, 1, 6, 3, 3, 3, 0, 1, 0, 1, 1, 0, 1, 1, 6, 3, 2, 2, 2, 1, 0, 0, 1, 1, 0, 1, 1, 6, 3, 1, 0, 2, 1, 1, 0, 0, 1, 1, 0, 1, 1
Offset: 1

Views

Author

Mats Granvik, Jul 09 2010

Keywords

Comments

The second column, sequence A000196, is the initial condition for the recurrence in this triangle. See A051731, formula entered on Feb 16 2010 for the more pure form of this recurrence.

Examples

			Triangle begins:
  1;
  1, 1;
  2, 1, 1;
  2, 1, 1, 1;
  3, 2, 0, 1, 1;
  4, 2, 2, 0, 1, 1;
  4, 2, 2, 1, 0, 1, 1;
  4, 2, 0, 2, 1, 0, 1, 1;
  4, 2, 2, 1, 1, 1, 0, 1, 1;
  5, 3, 2, 0, 1, 1, 1, 0, 1, 1;
  6, 3, 1, 1, 1, 0, 1, 1, 0, 1, 1;
		

Crossrefs

Programs

  • Excel
    Using European dot comma style:
    =if(and(row()=1;column()=1);1;if(row()>=column();if(column()=1;indirect(address(row()-1;column()+1))+indirect(address(row();column()+1));if(column()=2;floor(((row()-1)^0,5);1);if(row()>=column();sum(indirect(address(row()-column()+1;column()-1;4)&":"&address(row()-1;column()-1;4);4))-sum(indirect(address(row()-column()+1;column();4)&":"&address(row()-1;column();4);4));0)));0))

Formula

T(1,1)=1; n > 1 and k=1: T(n,1) = T(n-1,2) + T(n,2); k=2: T(n,2) = A000196(n-1); k > 2: T(n,k) = (Sum_{i=1..k-1} T(n-i,k-1)) - (Sum_{i=1..k-1} T(n-i,k)).

A059581 From Von Sterneck's conjecture: floor(sqrt(n)) - 2*|Mertens's function A002321(n)|.

Original entry on oeis.org

-1, 1, -1, 0, -2, 0, -2, -2, -1, 1, -1, -1, -3, -1, 1, 2, 0, 0, -2, -2, 0, 2, 0, 0, 1, 3, 3, 3, 1, -1, -3, -3, -1, 1, 3, 4, 2, 4, 6, 6, 4, 2, 0, 0, 0, 2, 0, 0, 1, 1, 3, 3, 1, 1, 3, 3, 5, 7, 5, 5, 3, 5, 5, 6, 8, 6, 4, 4, 6, 4, 2, 2, 0, 2, 2, 2, 4, 2, 0, 0, 1, 3, 1, 1, 3, 5, 7, 7, 5, 5, 7, 7, 9
Offset: 1

Views

Author

N. J. A. Sloane, Feb 16 2001

Keywords

Comments

Von Sterneck conjectured that 2*|A002321(n)| < sqrt(n) for all sufficiently large n. This is now known to be false. This is different from the Mertens conjecture that |A002321(n)| < sqrt(n) for all n > 1 (which is also false).

References

  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section VI.2, p. 188.

Crossrefs

Programs

  • Mathematica
    Table[Floor[Sqrt[n]] - 2 Abs[Plus @@ MoebiusMu[Range[n]]], {n, 1, 80}] (* Carl Najafi, Aug 17 2011 *)
Showing 1-4 of 4 results.