A059801
Numbers k such that 4^k - 3^k is prime.
Original entry on oeis.org
2, 3, 7, 17, 59, 283, 311, 383, 499, 521, 541, 599, 1193, 1993, 2671, 7547, 24019, 46301, 48121, 68597, 91283, 131497, 148663, 184463, 341233
Offset: 1
A062572
Numbers k such that 6^k - 5^k is prime.
Original entry on oeis.org
2, 5, 11, 13, 23, 61, 83, 421, 1039, 1511, 31237, 60413, 113177, 135647, 258413
Offset: 1
2 is in the sequence because 6^2 - 5^2 = 36 - 25 = 11, which is prime.
3 is not in the sequence because 6^3 - 5^3 = 216 - 125 = 91 = 7 * 13, which is not prime.
Two more terms (31237 and 60413) found by Predrag Minovic in 2004 corresponding to probable primes with 24308 and 47011 digits.
Jean-Louis Charton, Oct 06 2010
Two more terms (113177 and 135647) found by Jean-Louis Charton in 2009 corresponding to probable primes with 88069 and 105554 digits.
Jean-Louis Charton, Oct 13 2010
A062666
Numbers k such that 100^k - 99^k is prime.
Original entry on oeis.org
2, 5, 19, 59, 1013, 2371, 13967, 44683
Offset: 1
-
lst={}; k=100; Do[If[PrimeQ[k^n-(k-1)^n], Print[n]; AppendTo[lst, n]], {n, 10^5}]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 26 2008 *)
-
forprime(p=2,1e5,if(ispseudoprime(100^p-99^p),print1(p", "))) \\ Charles R Greathouse IV, Jun 10 2011
A128344
Numbers k such that (7^k - 5^k)/2 is prime.
Original entry on oeis.org
3, 5, 7, 113, 397, 577, 7573, 14561, 58543, 100019, 123407, 136559, 208283, 210761, 457871, 608347, 636043
Offset: 1
Cf.
A062572,
A128345,
A128346,
A128347,
A128348,
A128349,
A128350,
A128351,
A128352,
A128353,
A128354. Cf.
A004061,
A082182,
A121877,
A059802. Cf.
A057171,
A082387,
A122853,
A128335,
A128336,
A128337,
A128338,
A128339,
A128340,
A128341,
A128342.
-
k=7; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
-
is(n)=isprime((7^n-5^n)/2) \\ Charles R Greathouse IV, Feb 17 2017
A062589
Numbers k such that 23^k - 22^k is prime, or a strong pseudoprime.
Original entry on oeis.org
229, 241, 673, 5387, 47581
Offset: 1
A062587
Numbers k such that 21^k - 20^k is prime.
Original entry on oeis.org
2, 19, 41, 43, 337, 479, 9127, 37549, 44017, 59971, 128327, 176191, 193601
Offset: 1
A128336
Numbers k such that (6^k + 5^k)/11 is prime.
Original entry on oeis.org
3, 5, 17, 397, 409, 643, 1783, 2617, 4583, 8783
Offset: 1
Cf.
A057171,
A082387,
A122853,
A128335,
A128337,
A128338,
A128339,
A128340,
A128341,
A128342,
A128343,
A004061,
A082182,
A121877,
A059802,
A062572,
A128344,
A128345,
A128346,
A128347,
A128348,
A128349,
A128350,
A128351,
A128352,
A128353,
A128354.
-
k=6; Do[p=Prime[n]; f=(k^p+5^p)/(k+5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
-
forprime(p=3,1e4,if(ispseudoprime((6^p+5^p)/11),print1(p", "))) \\ Charles R Greathouse IV, Jul 16 2011
One more term (8783) added (unknown discoverer) corresponding to a probable prime with 6834 digits by
Jean-Louis Charton, Oct 06 2010
A128347
Numbers k such that (11^k - 5^k)/6 is prime.
Original entry on oeis.org
5, 41, 149, 229, 263, 739, 3457, 20269, 98221
Offset: 1
Cf.
A062572,
A128344,
A128345,
A128346,
A128348,
A128349,
A128350,
A128351,
A128352,
A128353,
A128354. Cf.
A004061,
A082182,
A121877,
A059802. Cf.
A057171,
A082387,
A122853,
A128335,
A128336,
A128337,
A128338,
A128339,
A128340,
A128341,
A128342.
-
k=11; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
-
is(n)=isprime((11^n-5^n)/6) \\ Charles R Greathouse IV, Feb 17 2017
A128342
Numbers k such that (13^k + 5^k)/18 is prime.
Original entry on oeis.org
13, 19, 31, 359, 487, 757, 761, 1667, 2551, 3167, 6829
Offset: 1
Cf.
A057171,
A082387,
A122853,
A128335,
A128336,
A128337,
A128338,
A128339,
A128340,
A128341,
A128343. Cf.
A004061,
A082182,
A121877,
A059802. Cf.
A062572,
A128344,
A128345,
A128346,
A128347,
A128348,
A128349,
A128350,
A128351,
A128352,
A128353,
A128354.
-
k=13; Do[p=Prime[n]; f=(k^p+5^p)/(k+5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
-
is(n)=isprime((13^n+5^n)/18) \\ Charles R Greathouse IV, Feb 17 2017
A128341
Numbers k such that (12^k + 5^k)/17 is prime.
Original entry on oeis.org
3, 5, 13, 347, 977, 1091, 4861, 4967, 34679
Offset: 1
Cf.
A057171,
A082387,
A122853,
A128335,
A128336,
A128337,
A128338,
A128339,
A128340,
A128342,
A128343.
Cf.
A062572,
A128344,
A128345,
A128346,
A128347,
A128348,
A128349,
A128350,
A128351,
A128352,
A128353,
A128354.
-
k=12; Do[p=Prime[n]; f=(k^p+5^p)/(k+5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
Select[Range[1100],PrimeQ[(12^#+5^#)/17]&] (* Harvey P. Dale, Jul 24 2012 *)
-
is(n)=isprime((12^n+5^n)/17) \\ Charles R Greathouse IV, Feb 17 2017
Showing 1-10 of 112 results.
Comments