cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059827 Cubes of triangular numbers: (n*(n+1)/2)^3.

Original entry on oeis.org

1, 27, 216, 1000, 3375, 9261, 21952, 46656, 91125, 166375, 287496, 474552, 753571, 1157625, 1728000, 2515456, 3581577, 5000211, 6859000, 9261000, 12326391, 16194277, 21024576, 27000000, 34328125, 43243551, 54010152, 66923416, 82312875, 100544625, 122023936, 147197952
Offset: 1

Views

Author

Jason Earls, Feb 24 2001

Keywords

Comments

Three-dimensional cage assemblies. (See Chapter 61, "Hyperspace Prisons", of C. A. Pickover's book "Wonders of Numbers" for full explanation of "cage numbers.")
For n>=0 the number of 3 X 3 matrices with nonnegative integer entries such that every row sum equals n is a(n+1). - Sharon Sela (sharonsela(AT)hotmail.com), May 14 2002
a(n) also gives the value for the number of possible cuboids (including cubes) that will fit inside an n*n*n cube. - Alexander Craggs, Mar 08 2017

References

  • C. A. Pickover. "Wonders of Numbers: Adventures in Mathematics, Mind and Meaning." Oxford University Press. New York, NY, 2001.

Crossrefs

Cf. A357178 (first differences).

Programs

  • Maple
    for n from 1 to 100 do printf(`%d,`,((n^3)*(n + 1)^3)/8) od:
    [seq(binomial(n+2,n)^3,n=0..50)]; # Zerinvary Lajos, May 17 2006
  • Mathematica
    Table[(n(n+1)/2)^3, {n,1000}] (* Zak Seidov, Jan 21 2012 *)
  • PARI
    a(n) = { (n*(n + 1)/2)^3 } \\ Harry J. Smith, Jun 29 2009

Formula

a(n) = Sum_{j=1..n} Sum_{i=1..n} i*j^3. - Alexander Adamchuk, Jun 25 2006
a(n) = (A000217(n))^3. - Zak Seidov, Jan 21 2012
G.f.: x*(1 + 20*x + 48*x^2 + 20*x^3 + x^4)/(1 - x)^7. - Colin Barker, Apr 24 2012
Sum_{n>=1} 1/a(n) = 80 - 8*Pi^2 (Ramanujan). - Jaume Oliver Lafont, Jul 17 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = 96*log(2) + 12*zeta(3) -80. - Amiram Eldar, May 14 2022
E.g.f.: exp(x)*x*(8 + 100*x + 184*x^2 + 98*x^3 + 18*x^4 + x^5)/8. - Stefano Spezia, Jun 13 2025

Extensions

More terms from James Sellers, Feb 26 2001