cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A120082 Numerators of expansion for Debye function for n=1: D(1,x).

Original entry on oeis.org

1, -1, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -691, 0, 1, 0, -3617, 0, 43867, 0, -174611, 0, 77683, 0, -236364091, 0, 657931, 0, -3392780147, 0, 1723168255201, 0, -7709321041217, 0, 151628697551, 0, -26315271553053477373, 0, 154210205991661, 0, -261082718496449122051
Offset: 0

Views

Author

Wolfdieter Lang, Jul 20 2006

Keywords

Comments

Denominators are found under A120083.
D(1,x) = (1/x)*integral_{t=0..x} t/(exp(t)-1) dt (note the factor x on the r.h.s. of the Abramowitz-Stegun link). This is the e.g.f. for {Bernoulli(n)/(n+1)}A027641(n)/A227540(n).%20Thanks%20to%20_Peter%20Luschny">{n>=0}. See A027641(n)/A227540(n). Thanks to _Peter Luschny for asking me to revisit this sequence. - Wolfdieter Lang, Jul 15 2013
Also numerators of coefficients in expansion of x/(exp(x)-1). See A227830 for denominators. - N. J. A. Sloane, Aug 01 2013

Examples

			Rationals r(n): [1, -1/4, 1/36, 0, -1/3600, 0, 1/211680, 0, -1/10886400, ...].
		

References

  • M. Kauers and P. Paule, The Concrete Tetrahedron, Springer 2011, p. 23.

Crossrefs

Programs

  • Magma
    [Numerator(Bernoulli(n)/Factorial(n+1)): n in [0..50]]; // G. C. Greubel, May 01 2023
    
  • Maple
    A120082 := proc(n) local b; if n = 0 then b := 1 ; elif n = 1 then b := -1/4 ; elif type(n, 'odd') then b := 0; else b := bernoulli(n)/(n+1)! ; fi; numer(b) ; end: # R. J. Mathar, Sep 03 2009
    gf := (1 - x/4 + sum((bernoulli(2*k)/((2*k+1)*(2*k)!))*x^(2*k), k=0..infinity)):
    a := proc(n) local ser; if n = 0 then return 1 fi; ser := series(gf, x, n+2):
    numer(coeff(ser, x, n)) end: seq(a(n), n = 0..40); # Peter Luschny, Dec 02 2022
  • Mathematica
    Table[Numerator[BernoulliB[n]/((n+1)!)], {n,0,50}] (* G. C. Greubel, May 01 2023 *)
  • SageMath
    def A120082(n): return numerator(bernoulli(n)/factorial(n+1))
    [A120082(n) for n in range(51)] # G. C. Greubel, May 01 2023

Formula

a(n) = numerator(r(n)), with r(n) = [x^n] (1 - x/4 + Sum_{k>=0} (B(2*k)/((2*k+1)*(2*k)!))*x^(2*k)), |x| < 2*Pi. B(2*k) = A000367(k)/A002445(k) (Bernoulli numbers).
a(n) = numerator(B(n)/(n+1)!), n >= 0. See the above comment on the e.g.f. D(1,x). - Wolfdieter Lang, Jul 15 2013
Apart from the sign of a(1) this sequence differs from A358625 for the first time at n = 68. - Peter Luschny, Dec 02 2022

Extensions

Edited after Andrey Zabolotskiy noticed an inconsistency by Peter Luschny, Dec 02 2022

A101925 a(n) = A005187(n) + 1.

Original entry on oeis.org

1, 2, 4, 5, 8, 9, 11, 12, 16, 17, 19, 20, 23, 24, 26, 27, 32, 33, 35, 36, 39, 40, 42, 43, 47, 48, 50, 51, 54, 55, 57, 58, 64, 65, 67, 68, 71, 72, 74, 75, 79, 80, 82, 83, 86, 87, 89, 90, 95, 96, 98, 99, 102, 103, 105, 106, 110, 111, 113, 114, 117, 118, 120, 121, 128, 129
Offset: 0

Views

Author

Ralf Stephan, Dec 28 2004

Keywords

Comments

Exponent of 2 in the sequences A032184, A052278, A060055, A066318, A088229, A101926.
p(n) sequence for k=2, s=0. p(n) = min(j: A046699(j) = n). - Frank Ruskey and Chris Deugau (deugaucj(AT)uvic.ca)

Crossrefs

Bisection of A089279. First differences are in A001511.

Programs

  • Mathematica
    Table[IntegerExponent[(2 n)!, 2] + 1, {n, 0, 65}] (* or *)
    Table[2 n - DigitCount[2 n, 2, 1] + 1, {n, 0, 65}] (* Michael De Vlieger, Feb 04 2017 *)
  • PARI
    a(n)=1+sum(k=1, n, valuation(k,2)+1)
    
  • PARI
    a(n)=if(n==0,1,if((n%2)==0,2*a(n/2)+subst(Pol(binary(n)),x,1)-1,a(n-1)+1))
    
  • PARI
    a(n)=2*n+1-hammingweight(n) \\ Charles R Greathouse IV, Dec 29 2022
    
  • Python
    def A101925(n): return (n<<1)-n.bit_count()+1 # Chai Wah Wu, Jul 13 2022

Formula

Recurrence: a(2n) = 2a(n) + A000120(n) - 1, a(2n+1) = a(2n) + 1.
G.f.: (1 / 1-z) * (z + z * sum(z^(2^i) * (s + (1 / (1 - z^(2^k)))),i=0..infinity)). - Frank Ruskey and Chris Deugau (deugaucj(AT)uvic.ca)

A060054 Numerators of numbers appearing in the Euler-Maclaurin summation formula.

Original entry on oeis.org

-1, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -691, 0, 1, 0, -3617, 0, 43867, 0, -174611, 0, 77683, 0, -236364091, 0, 657931, 0, -3392780147, 0, 1723168255201, 0, -7709321041217, 0, 151628697551, 0, -26315271553053477373
Offset: 1

Views

Author

Wolfdieter Lang, Feb 16 2001

Keywords

Comments

a(n+1) = numerator(-Zeta(-n)), n>=1, with Riemann's zeta function. a(1)=-1=-numerator(-Zeta(-0)). For denominators see A075180.
Comment from N. J. A. Sloane, Oct 15 2008: (Start)
It appears that essentially the same sequence of rational numbers arises when we expand 1/(exp(1/x)-1) for large x. Here is the result of applying Bruno Salvy's gdev Maple program (answering a question raised by Roger L. Bagula):
gdev(1/(exp(1/x)-1), x=infinity, 20);
x - 1/2 + (1/12)/x - (1/720)/x^3 + (1/30240)/x^5 - (1/1209600)/x^7 + (1/47900160)/x^9 - (691/1307674368000)/x^11 + (1/74724249600)/x^13 - (3617/10670622842880000)/x^15 + (43867/5109094217170944000)/x^17 - (174611/802857662698291200000)/x^19 + ... (End)

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 16 (3.6.28), p. 806 (23.1.30), p. 886 (25.4.7).

Crossrefs

Denominators of nonzero numbers give A060055.
Cf. A001067 (numerator of B(2*k)/(2*k)).
Cf. A075180.
Cf. also A120082/A227830.

Programs

  • Haskell
    a060054 n = a060054_list !! n
    a060054_list = -1 : map (numerator . sum) (tail $ zipWith (zipWith (%))
       (zipWith (map . (*)) a000142_list a242179_tabf) a106831_tabf)
    -- Reinhard Zumkeller, Jul 04 2014
  • Mathematica
    a[m_] := Sum[(-2)^(-k-1) k! StirlingS2[m,k],{k,0,m}]/(2^(m+1)-1); Table[Numerator[a[i]], {i,0,30}] (* Peter Luschny, Apr 29 2009 *)
  • Maxima
    a(n):=num((-1)^n*sum(binomial(n+k-1,n-1)*sum((j!*(-1)^(j)*binomial(k,j)*stirling1(n+j,j))/(n+j)!,j,1,k),k,1,n)); /* Vladimir Kruchinin, Feb 03 2013 */
    

Formula

a(n) = numerator(b(n)) with b(1) = -1/2; b(2*k+1) = 0, k >= 1; b(2*k) = B(2*k)/(2*k)! (B(2*n) = B_{2n} Bernoulli numbers: numerators A000367, denominators A002445)

A227830 Denominators of coefficients in expansion of x/(exp(x)-1).

Original entry on oeis.org

1, 2, 12, 1, 720, 1, 30240, 1, 1209600, 1, 47900160, 1, 1307674368000, 1, 74724249600, 1, 10670622842880000, 1, 5109094217170944000, 1, 802857662698291200000, 1, 14101100039391805440000, 1, 1693824136731743669452800000, 1, 186134520519971831808000000, 1, 37893265687455865519472640000000, 1, 759790291646040068357842010112000000, 1
Offset: 0

Views

Author

N. J. A. Sloane, Aug 01 2013

Keywords

Examples

			1, -1/2, 1/12, 0, -1/720, 0, 1/30240, 0, -1/1209600, 0, 1/47900160, 0, -691/1307674368000, 0, 1/74724249600, 0, ...
		

References

  • M. Kauers and P. Paule, The Concrete Tetrahedron, Springer 2011, p. 23.

Crossrefs

For numerators see A120082.

Programs

  • Mathematica
    Denominator[ CoefficientList[ Series[x/(1 - E^-x), {x, 0, 26}], x]] (* Robert G. Wilson v, Dec 29 2016 *)
  • Sage
    @cached_function
    def R(n): return -sum(R(k)/factorial(n-k+1) for k in (0..n-1)) if n>0 else 1
    print([R(n).denominator() for n in (0..31)]) # Peter Luschny, Jul 30 2015

Formula

Recurrence: R(0) = 1 and R(n) = - Sum_{k=0..n-1} R(k)/(n-k+1)! for n>=1. Then a(n) = denominator(R(n)). - Peter Luschny, Jul 30 2015

A230265 Denominators of eta(2*n)/Pi^(2*n), where eta(n) is the Dirichlet eta function.

Original entry on oeis.org

2, 12, 720, 30240, 1209600, 6842880, 1307674368000, 74724249600, 1524374691840000, 5109094217170944000, 802857662698291200000, 287777551824322560000, 1693824136731743669452800000, 186134520519971831808000000
Offset: 0

Views

Author

Arkadiusz Wesolowski, Oct 14 2013

Keywords

Comments

The first 5 terms of this sequence are the same as in A060055.

Crossrefs

Numerators give A036280.

Programs

  • PARI
    for(n=0, 7, print1(2*denominator(polcoeff(Ser(1/sin(x)), 2*n-1)), ", "));

Formula

a(n) = A036280(n)*Pi^(2*n)/(zeta(2*n)*(1 - 2^(1-2*n))).
a(n) = denominator((-1)^(n+1)*BernoulliB(2*n)*(2^(2*n-1) - 1)/(2*n)!).
a(n) = 2*A036281(n).
Showing 1-5 of 5 results.