A060187 Triangle read by rows: Eulerian numbers of type B, T(n,k) (1 <= k <= n) given by T(n, 1) = T(n,n) = 1, otherwise T(n, k) = (2*n - 2*k + 1)*T(n-1, k-1) + (2*k - 1)*T(n-1, k).
1, 1, 1, 1, 6, 1, 1, 23, 23, 1, 1, 76, 230, 76, 1, 1, 237, 1682, 1682, 237, 1, 1, 722, 10543, 23548, 10543, 722, 1, 1, 2179, 60657, 259723, 259723, 60657, 2179, 1, 1, 6552, 331612, 2485288, 4675014, 2485288, 331612, 6552, 1, 1, 19673, 1756340, 21707972, 69413294, 69413294, 21707972, 1756340, 19673, 1
Offset: 1
Examples
The triangle T(n, k) begins: n\k 1 2 3 4 5 6 7 8 ... 1: 1 2: 1 1 3: 1 6 1 4: 1 23 23 1 5: 1 76 230 76 1 6: 1 237 1682 1682 237 1 7: 1 722 10543 23548 10543 722 1 8: 1 2179 60657 259723 259723 60657 2179 1 ... row n = 9: 1 6552 331612 2485288 4675014 2485288 331612 6552 1, row n = 10: 1 19673 1756340 21707972 69413294 69413294 21707972 1756340 19673 1, row n = 11: 1 59038 9116141 178300904 906923282 1527092468 906923282 178300904 9116141 59038 1, ... reformatted. - _Wolfdieter Lang_, Mar 17 2017
References
- G. Boros and V. H. Moll, Irresistible Integrals: Symbolics, Analysis and Experiments in the Evaluation of Integrals, Cambridge University Press, 2004.
- T. K. Petersen, Eulerian Numbers, Birkhauser, 2015, Chapter 11.
- W. Quade and L. Collatz, Zur Interpolationstheorie der reellen periodischen Funktionen. Sitzungsbericht der Preuss. Akad. der Wiss., Phys.-Math. Kl, (1938), 383-429.
Links
- Muniru A Asiru, Table of n, a(n) for n = 1..1275
- Juan Arias de Reyna, Integral Representation for Riemann-Siegel Z(t) function, arXiv:2406.18968 [math.NT], 2024. See p. 11.
- Jean-Christophe Aval, Adrien Boussicault, and Philippe Nadeau, Tree-like Tableaux, Electronic Journal of Combinatorics, 20(4), 2013, #P34.
- Eli Bagno and David Garber, Type-B analogue of Bell numbers using Rota's Umbral calculus approach, arXiv:2406.16393 [cs.DM], 2024. See p. 5.
- Eli Bagno, David Garber, and Mordechai Novick, The Worpitzky identity for the groups of signed and even-signed permutations, arXiv:2004.03681 [math.CO], 2020.
- Paul Barry, General Eulerian Polynomials as Moments Using Exponential Riordan Arrays, Journal of Integer Sequences, 16 (2013), #13.9.6.
- Paul Barry, On a transformation of Riordan moment sequences, arXiv:1802.03443 [math.CO], 2018.
- Paul Barry, Generalized Eulerian Triangles and Some Special Production Matrices, arXiv:1803.10297 [math.CO], 2018.
- Jose Bastidas, The polytope algebra of generalized permutahedra, arXiv:2009.05876 [math.CO], 2020.
- Victor Batyrev and Mark Blume, On generalizations of Losev-Manin moduli systems for classical root systems arXiv:0912.2898 [math.AG], 2009-2011, (p. 13). - _Tom Copeland_, Oct 03 2014
- Anna Borowiec and Wojciech Mlotkowski, New Eulerian numbers of type D, arXiv:1509.03758 [math.CO], 2015.
- Chak-On Chow and I. M. Gessel, On the descent numbers and major indices for the hyperoctahedral group, Adv. Appl. Math. 38, No. 3, 275-301 (2007).
- Sandrine Dasse-Hartaut and Pawel Hitczenko, Greek letters in random staircase tableaux, arXiv:1202.3092 [math.CO], 2012.
- Andrew Ducharme, Unifying trigonometric and hyperbolic function derivatives via negative integer order polylogarithms, arXiv:2405.19371 [math.GM], 2024. See p. 6.
- Christopher Eur, Alex Fink, Matt Larson, and Hunter Spink, Signed permutohedra, delta-matroids, and beyond, arXiv:2209.06752 [math.AG], 2022-2024; Proc. Lond. Math. Soc. 3 (2024). Paper No. e12592, 54pp.
- Sergey Fomin and Nathan Reading, Root systems and generalized associahedra, Lecture notes for IAS/Park-City 2004, arXiv:math/0505518 [math.CO], 2005-2008.
- Ghislain R. Franssens, On a Number Pyramid Related to the Binomial, Deleham, Eulerian, MacMahon and Stirling number triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.4.1.
- Pawel Hitczenko and Svante Janson, Weighted random staircase tableaux, arXiv:1212.5498 [math.CO], 2012.
- Svante Janson, Euler-Frobenius numbers and rounding, arXiv:1305.3512 [math.PR], 2013.
- Zakhar Kabluchko and Hugo Panzo, A refinement of the Sylvester problem: Probabilities of combinatorial types, arXiv:2501.16166 [math.PR], 2025. See p. 24.
- Wolfdieter Lang, On Sums of Powers of Arithmetic Progressions, and Generalized Stirling, Eulerian and Bernoulli Numbers, arXiv:math/1707.04451 [math.NT], July 2017.
- Lily L. Liu and Yi Wang, A unified approach to polynomial sequences with only real zeros, arXiv:math/0509207 [math.CO], 2005-2006.
- Peter Luschny, Eulerian polynomials.
- Shi-Mei Ma, Some combinatorial sequences associated with context-free grammars, arXiv:1208.3104v2 [math.CO], 2012. - From N. J. A. Sloane, Aug 21 2012
- Shi-Mei Ma, On gamma-vectors and the derivatives of the tangent and secant functions, arXiv:1304.6654 [math.CO], 2013.
- Shi-Mei Ma, A family of two-variable derivative polynomials for tangent and secant, El J. Combinat. 20 (1) (2013) P11.
- Shi-Mei Ma, Qi Fang, Toufik Mansour, and Yeong-Nan Yeh, Alternating Eulerian polynomials and left peak polynomials, arXiv:2104.09374, 2021
- Shi-Mei Ma, Jun Ma, and Yeong-Nan Yeh, On certain combinatorial expansions of descent polynomials and the change of grammars, arXiv:1802.02861 [math.CO], 2018.
- Shi-Mei Ma, T. Mansour, and D. Callan, Some combinatorial arrays related to the Lotka-Volterra system, arXiv:1404.0731 [math.CO], 2014.
- Shi-Mei Ma and Hai-Na Wang, Enumeration of a dual set of Stirling permutations by their alternating runs, arXiv:1506.08716 [math.CO], 2015.
- P. A. MacMahon, The divisors of numbers, Proc. London Math. Soc., (2) 19 (1921), 305-340; Coll. Papers II, pp. 267-302.
- Fumihiko Nakano and Taizo Sadahiro, A generalization of carries process and Eulerian numbers, arXiv:1306.2790 [math.PR], 2013.
- G. Rzadkowski, An Analytic Approach to Special Numbers and Polynomials, J. Int. Seq. 18 (2015) 15.8.8.
- I. J. Schoenberg, Cardinal interpolation and spline functions IV. The exponential Euler splines. ISNM 20 (1972), 382-404.
- Richard P. Stanley and Fabrizio Zanello, Unimodality of partitions with distinct parts inside Ferrers shapes, arXiv:1305.6083 [math.CO], 2013.
- Richard P. Stanley and Fabrizio Zanello, Some asymptotic results on q-binomial coefficients, 2014.
- Einar SteingrÃmsson, Permutation statistics of indexed permutations, European J. Combin. 15 (1994), no. 2, 187-205.
- G. Strasser, Generalisation of the Euler adic, Math. Proc. Camb. Phil. Soc. 150 (2010) 241-256, Triangle A_2(n,k).
Crossrefs
Programs
-
GAP
a:=Flat(List([1..11],n->List([1..n],k->Sum([1..k],i->(-1)^(k-i)*Binomial(n,k-i)*(2*i-1)^(n-1))))); # Muniru A Asiru, Feb 09 2018
-
Magma
[[(&+[(-1)^(k-j)*Binomial(n,k-j)*(2*j-1)^(n-1): j in [1..k]]): k in [1..n]]: n in [1..10]]; // G. C. Greubel, Nov 08 2018
-
Maple
A060187:= (n,k) -> add((-1)^(k-i)*binomial(n,k-i)*(2*i-1)^(n-1), i = 1..k): for n from 1 to 10 do seq(A060187(n,k),k = 1..n); end do; # Peter Bala, Oct 26 2008 T:=proc(n,k,l) option remember; if (n=1 or k=1 or k=n) then 1 else (l*n-l*k+1)*T(n-1,k-1,l)+(l*k-l+1)*T(n-1,k,l); fi; end; for n from 1 to 10 do lprint([seq(T(n,k,2),k=1..n)]); od; # N. J. A. Sloane, May 08 2013 P := proc(n,x) option remember; if n = 0 then 1 else (n*x+(1/2)*(1-x))*P(n-1,x)+x*(1-x)*diff(P(n-1,x),x); expand(%) fi end: A060187 := (n,k) -> 2^n*coeff(P(n,x),x,k): seq(print(seq(A060187(n,k), k=0..n)), n=0..10); # Peter Luschny, Mar 08 2014
-
Mathematica
p[x_, n_] = 2^n (1 - x)^(1 + n) LerchPhi[x, -n, 1/2]; Table[CoefficientList[p[x, n], x], {n, 0, 10}] // Flatten (* Roger L. Bagula, Sep 16 2008 *) T[n_, k_] := Sum[(-1)^(k-i)*Binomial[n, k-i]*(2*i-1)^(n-1), {i, 1, k}]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 23 2015, after Peter Bala *)
-
PARI
{T(n, k) = if( n
Michael Somos, Jan 07 2011 */ -
Python
from math import isqrt, comb def A060187(n): a = (m:=isqrt(k:=n<<1))+(k>m*(m+1)) b = n-comb(a,2) return sum(-comb(a,b-i)*((i<<1)-1)**(a-1) if b-i&1 else comb(a,b-i)*((i<<1)-1)**(a-1) for i in range(1,b+1)) # Chai Wah Wu, Nov 13 2024
-
Sage
@CachedFunction def A060187(n, k) : if n == 0: return 1 if k == 0 else 0 return (2*(n-k)+1)*A060187(n-1, k-1) + (2*k+1)*A060187(n-1, k) for n in (0..8): [A060187(n,k) for k in (0..n)] # Peter Luschny, Apr 26 2013
Formula
T(s, 2) = 3^(s-1) - s. Sum_{t=1..s} T(s, t) = 2^(s-1)*(s-1)!.
From Peter Bala, Oct 26 2008: (Start)
T(n,k) = Sum_{i = 1..k} (-1)^(k-i)*binomial(n,k-i)*(2*i-1)^(n-1).
E.g.f.: (1 - x)*exp((1 - x)*t)/(1 - x*exp(2*(1 - x)*t)) = 1 + (1 + x)*t + (1 + 6*x + x^2)*t^2/2! + ... .
The row polynomials R(n,x) satisfy R(n,x)/(1 - x)^n = Sum_{i >= 1} (2*i - 1)^(n-1)*x^i. For example, row 3 gives (x + 6*x^2 + x^3)/ (1 - x)^3 = x + 3^2*x^2 + 5 ^2*x^3 + 7^2*x^4 + ... .
The recurrence relation R(n+1,x) = [(2*n+1)*x - 1]*R(n,x) + 2*x*(1 - x)*R'(n,x) shows that the row polynomials R(n,x) have only real zeros (apply Corollary 1.2 of [Liu and Wang]).
Worpitzky-type identity: Sum_{k = 1..n} T(n,k)*binomial(x+k-1,n-1) = (2*x+1)^(n-1).
The nonzero alternating row sums are (-1)^(n-1)*A002436(n). (End)
exp(x)*(d/dx)^n [exp(x)/(1 - exp(2*x))] = R(n+1,exp(2*x))/ (1 - exp(2*x))^(n+1).
Compare with Example 12.3.1. in [Boros and Moll]. - Peter Bala, Nov 07 2008
The n-th row polynomial R(n,x) = Sum_{k = 0..n} A145901(n,k)*x^k*(1 - x)^(n-k) = Sum_{k = 0..n} A145901(n,k)*(x - 1)^(n-k). - Peter Bala, Jul 22 2014
Assuming an offset 0, the n-th row polynomial = (x - 1)^n * log(x) * Integral_{u = 0..inf} (2*floor(u) + 1)^n * x^(-u) du, provided x > 1. - Peter Bala, Feb 06 2015
The finite sums of consecutive odd integer powers is derived from this number triangle: Sum_{k=1..n}(2k-1)^m = Sum_{j=1..m+1}binomial(n+m+1-j,m+1)*T(m+1,j). - Tony Foster III, Feb 09 2018
Comments