A060188 A column and diagonal of A060187.
1, 6, 23, 76, 237, 722, 2179, 6552, 19673, 59038, 177135, 531428, 1594309, 4782954, 14348891, 43046704, 129140145, 387420470, 1162261447, 3486784380, 10460353181, 31381059586, 94143178803, 282429536456, 847288609417
Offset: 2
Links
- Vincenzo Librandi, Table of n, a(n) for n = 2..2000
- P. A. MacMahon, The divisors of numbers, Proc. London Math. Soc., (2) 19 (1920), 305-340; Coll. Papers II, pp. 267-302.
- Index entries for linear recurrences with constant coefficients, signature (5,-7,3).
Programs
-
Magma
[3^(n-1)-n: n in [2..30]]; // Vincenzo Librandi, Sep 05 2011
-
Maple
a[0]:=1:for n from 1 to 24 do a[n]:=(4*a[n-1]-3*a[n-2]+2) od: seq(a[n], n=0..24); # Zerinvary Lajos, Jun 08 2007
-
Mathematica
Table[3^(n-1) -n, {n,2,30}] (* Vladimir Joseph Stephan Orlovsky, Nov 15 2008 *) LinearRecurrence[{5,-7,3},{1,6,23},30] (* Harvey P. Dale, Jul 03 2024 *)
-
Sage
[3^(n-1) -n for n in (2..32)] # G. C. Greubel, Jan 07 2022
Formula
a(n) = 3^(n-1) - n = A061980(n-1, 2). - Henry Bottomley, May 24 2001
From Paul Barry, Jun 24 2003: (Start)
With offset 0, this is 3^(n+1) - n - 2.
Partial sums of A048473. (End)
From Colin Barker, Dec 19 2012: (Start)
a(n) = 5*a(n-1) - 7*a(n-2) + 3*a(n-3).
G.f.: x^2*(1 + x)/((1-x)^2*(1-3*x)). (End)
E.g.f.: (exp(3*x) - 3*x*exp(x) - 1)/3. - Wolfdieter Lang, Apr 17 2017
Extensions
More terms from Vladeta Jovovic, Mar 20 2001
Comments