A060645 a(0) = 0, a(1) = 4, then a(n) = 18*a(n-1) - a(n-2).
0, 4, 72, 1292, 23184, 416020, 7465176, 133957148, 2403763488, 43133785636, 774004377960, 13888945017644, 249227005939632, 4472197161895732, 80250321908183544, 1440033597185408060, 25840354427429161536
Offset: 0
Examples
Given a(1) = 4, a(2) = 72 we have, for instance, a(4) = 18*a(3) - a(2) = 18*{18*a(2) - a(1)} - a(2), i.e., a(4) = 323*a(2) - 18*a(1) = 323*72 - 18*4 = 23184.
Links
- Harry J. Smith, Table of n, a(n) for n = 0..200
- Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
- A. J. C. Cunningham, Binomial Factorisations, Vols. 1-9, Hodgson, London, 1923-1929. See Vol. 1, page xxxv.
- Tanya Khovanova, Recursive Sequences
- John Robertson, Home page
- Index entries for linear recurrences with constant coefficients, signature (18,-1).
Crossrefs
Cf. A023039.
Programs
-
Maple
A060645 := proc(n) option remember: if n=1 then RETURN(4) fi: if n=2 then RETURN(72) fi: 18*A060645(n -1)- A060645(n-2): end: for n from 1 to 30 do printf(`%d,`, A060645(n)) od:
-
Mathematica
CoefficientList[ Series[4x/(1 - 18x + x^2), {x, 0, 16}], x] (* Robert G. Wilson v *) LinearRecurrence[{18, -1} {0, 4}, 50] (* Sture Sjöstedt, Nov 29 2011 *) Table[4 ChebyshevU[-1 + n, 9], {n, 0, 16}] (* Herbert Kociemba, Jun 05 2022 *)
-
PARI
g(n,k) = for(y=0,n,x=k*y^2+1;if(issquare(x),print1(y",")))
-
PARI
a(n)=fibonacci(6*n)/2 \\ Benoit Cloitre
-
PARI
for (i=1,10000,if(Mod(sigma(5*i^2+1),2)==1,print1(i,",")))
-
PARI
{ for (n=0, 200, write("b060645.txt", n, " ", fibonacci(6*n)/2); ) } \\ Harry J. Smith, Jul 09 2009
Formula
a(n) = 18*a(n-1) - a(n-2), with a(1) = denominator of continued fraction [2; 4] and a(2) = denominator of [2; 4, 4, 4].
G.f.: 4x/(1-18*x+x^2). - Cino Hilliard, Feb 02 2006
a(n) may be computed either as (i) the denominator of the (2n-1)-th convergent of the continued fraction [2; 4, 4, 4, ...] = sqrt(5), or (ii) as the coefficient of sqrt(5) in (9+sqrt(5))^n.
Numbers k such that sigma(5*k^2 + 1) mod 2 = 1. - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 26 2004
a(n) = 17*(a(n-1) + a(n-2)) - a(n-3) = 19*(a(n-1) - a(n-2)) + a(n-3). - Mohamed Bouhamida, Sep 20 2006
From Johannes W. Meijer, Jul 01 2010: (Start)
Limit_{n->infinity} A023039(n)/a(n) = sqrt(5). (End)
a(n) = Fibonacci(6*n)/2. - Gary Detlefs, Apr 02 2012
a(n) = 4*S(n-1, 18), with Chebyshev's S-polynomials. See A049310. S(-1, x)= 0. - Wolfdieter Lang, Aug 24 2014
Extensions
More terms from James Sellers, Apr 19 2001
Entry revised by N. J. A. Sloane, Aug 13 2006
Comments