cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A005249 Determinant of inverse Hilbert matrix.

Original entry on oeis.org

1, 1, 12, 2160, 6048000, 266716800000, 186313420339200000, 2067909047925770649600000, 365356847125734485878112256000000, 1028781784378569697887052962909388800000000, 46206893947914691316295628839036278726983680000000000
Offset: 0

Views

Author

Keywords

Comments

a(n) = 1/determinant of M(n)*(-1)^floor(n/2) where M(n) is the n X n matrix m(i,j)=1/(i-j+n).
For n>=2, a(n) = Product k=1...(n-1) (2k+1) * C(2k,k)^2. This is a special case of the Cauchy determinant formula. A similar formula exists also for A067689. - Sharon Sela (sharonsela(AT)hotmail.com), Mar 23 2002

Examples

			The matrix begins:
  1    1/2  1/3  1/4  1/5  1/6  1/7  1/8  ...
  1/2  1/3  1/4  1/5  1/6  1/7  1/8  1/9  ...
  1/3  1/4  1/5  1/6  1/7  1/8  1/9  1/10 ...
  1/4  1/5  1/6  1/7  1/8  1/9  1/10 1/11 ...
  1/5  1/6  1/7  1/8  1/9  1/10 1/11 1/12 ...
  1/6  1/7  1/8  1/9  1/10 1/11 1/12 1/13 ...
		

References

  • Philip J. Davis, Interpolation and Approximation, Dover Publications, 1975, p. 288.
  • Jerry Glynn and Theodore Gray, "The Beginner's Guide to Mathematica Version 4," Cambridge University Press, Cambridge UK, 2000, page 76.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    List([0..10],n->Product([1..n-1],k->(2*k+1)*Binomial(2*k,k)^2)); # Muniru A Asiru, Jul 07 2018
  • J
    H=: % @: >: @: (+/~) @: i.
    det=: -/ .* NB. Roger Hui, Oct 12 2005
    
  • Maple
    with(linalg): A005249 := n-> 1/det(hilbert(n));
  • Mathematica
    Table[ 1 / Det[ Table[ 1 / (i + j), {i, 1, n}, {j, 0, n - 1} ]], {n, 1, 10} ]
    Table[Denominator[Det[HilbertMatrix[n]]], {n, 0, 12}]//Quiet (* L. Edson Jeffery, Aug 05 2014 *)
    Table[BarnesG[2 n + 1]/BarnesG[n + 1]^4, {n, 0, 10}] (* Jan Mangaldan, Sep 22 2021 *)
  • PARI
    a(n)=n^n*prod(k=1,n-1,(n^2-k^2)^(n-k))/prod(k=0,n-1,k!^2)
    
  • PARI
    a(n)=if(n<0,0,1/matdet(mathilbert(n)))
    
  • PARI
    a(n)=if(n<0,0,prod(k=0,n-1,(2*k)!*(2*k+1)!/k!^4))
    
  • Sage
    def A005249(n):
        swing = lambda n: factorial(n)/factorial(n//2)^2
        return mul(swing(i) for i in (1..2*n-1))
    [A005249(i) for i in (0..10)] # Peter Luschny, Sep 18 2012
    

Formula

a(n) = n^n*(Product_{k=1..n-1} (n^2 - k^2)^(n-k))/Product_{k=0..n-1} k!^2. - Benoit Cloitre, Jan 15 2003
The reciprocal of the determinant of an n X n matrix whose element at T(i, j) is 1/(i+j-1).
a(n+1) = a(n)*A000515(n) = a(n)*(2*n+1)*binomial(2n,n)^2. - Enrique Pérez Herrero, Mar 31 2010 [In other words, the partial products of sequence A000515. - N. J. A. Sloane, Jul 10 2015]
a(n) = n!*Product_{i=1..2n-1} binomial(i,floor(i/2)) = n!*|A069945(n)|. - Peter Luschny, Sep 18 2012
a(n) = Product_{i=1..2n-1} A056040(i) = A163085(2*n-1). - Peter Luschny, Sep 18 2012
a(n) ~ A^3 * 2^(2*n^2 - n - 1/12) * n^(1/4) / (exp(1/4) * Pi^n), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, May 01 2015
a(n) = A000178(2*n-1)/A000178(n-1)^4, for n >= 1. - Amiram Eldar, Oct 20 2022

Extensions

1 more term from Jud McCranie, Jul 16 2000
Additional comments from Robert G. Wilson v, Feb 06 2002

A067689 Inverse of determinant of n X n matrix whose (i,j)-th element is 1/(i+j).

Original entry on oeis.org

1, 2, 72, 43200, 423360000, 67212633600000, 172153600393420800000, 7097063852481244869427200000, 4702142622508202833251304734720000000, 50019370356486058711268515056654483456000000000, 8537000898240926708833515201784986712482596782080000000000
Offset: 0

Views

Author

Robert G. Wilson v, Feb 04 2002

Keywords

Examples

			The matrix begins:
1/2 1/3 1/4 1/5 1/6 1/7 1/8 ...
1/3 1/4 1/5 1/6 1/7 1/8 1/9 ...
1/4 1/5 1/6 1/7 1/8 1/9 1/10 ...
1/5 1/6 1/7 1/8 1/9 1/10 1/11 ...
1/6 1/7 1/8 1/9 1/10 1/11 1/12 ...
1/7 1/8 1/9 1/10 1/11 1/12 1/13 ...
		

References

  • Jerry Glynn and Theodore Gray, "The Beginner's Guide to Mathematica Version 4," Cambridge University Press, Cambridge UK, 2000, page 76.
  • G. Pólya and G. Szegő, Aufgaben und Lehrsätze aus der Analysis II, Vierte Auflage, Heidelberger Taschenbücher, Springer, 1971, p. 98, 3. and p. 299, 3.

Crossrefs

Cf. A000984, A060739. See A005249 for a formula.

Programs

  • Maple
    a:= n-> 1/LinearAlgebra[Determinant](Matrix(n, (i,j)-> 1/(i+j))):
    seq(a(n), n=0..11);  # Alois P. Heinz, Nov 24 2023
  • Mathematica
    Table[ 1 / Det[ Table[ 1 / (i + j), {i, 1, n}, {j, 1, n} ]], {n, 1, 10} ]
    a[n_] := Product[ k!/Quotient[k, 2]!^2, {k, 0, 2*n}]; Table[a[n], {n, 1, 9}] (* Jean-François Alcover, Oct 17 2013, after Peter Luschny *)
  • PARI
    a(n)=prod(k=0, n-1, (2*k)!*(2*k+1)!/k!^4)*binomial(2*n,n) \\ Charles R Greathouse IV, Feb 07 2017
  • Sage
    def A067689(n):
        swing = lambda n: factorial(n)/factorial(n//2)^2
        return mul(swing(i) for i in (0..2*n))
    [A067689(i) for i in (1..9)] # Peter Luschny, Sep 18 2012
    

Formula

Equals A005249 * A000984. - Sharon Sela (sharonsela(AT)hotmail.com), Apr 18 2002
a(n) = A163085(2*n). - Peter Luschny, Sep 18 2012
a(n) ~ A^3 * 2^(2*n^2 + n - 1/12) / (exp(1/4) * n^(1/4) * Pi^(n+1/2)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, May 01 2015
a(n) = Prod_{i=1..n}(Prod_{j=1..n} (i+j)) / Prod_{i=1..n}(Prod_{j=1..n-1} (i-j)^2), n >= 1. See the Pólya and Szegő reference (special case) with the original Cauchy reference. - Wolfdieter Lang, Apr 25 2016

Extensions

a(0)=1 prepended by Alois P. Heinz, Nov 24 2023

A069704 Let M_2n be the 2n X 2n matrix M_(i,j)=C(2i,j)-C(2j,i) where C(k,l) denotes the binomial coefficients; then a(n)=det(M_2n).

Original entry on oeis.org

9, 2401, 7139584, 7429060864, 8768304271322176, 55287838983612748529926144, 28712457542131501655125523112656896, 597353290725130889841630014909751870078582784
Offset: 1

Views

Author

Benoit Cloitre, Apr 21 2002

Keywords

Comments

det(M_{2n+1})=0

Crossrefs

Showing 1-3 of 3 results.