A005249
Determinant of inverse Hilbert matrix.
Original entry on oeis.org
1, 1, 12, 2160, 6048000, 266716800000, 186313420339200000, 2067909047925770649600000, 365356847125734485878112256000000, 1028781784378569697887052962909388800000000, 46206893947914691316295628839036278726983680000000000
Offset: 0
The matrix begins:
1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 ...
1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 ...
1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10 ...
1/4 1/5 1/6 1/7 1/8 1/9 1/10 1/11 ...
1/5 1/6 1/7 1/8 1/9 1/10 1/11 1/12 ...
1/6 1/7 1/8 1/9 1/10 1/11 1/12 1/13 ...
- Philip J. Davis, Interpolation and Approximation, Dover Publications, 1975, p. 288.
- Jerry Glynn and Theodore Gray, "The Beginner's Guide to Mathematica Version 4," Cambridge University Press, Cambridge UK, 2000, page 76.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..25
- Man-Duen Choi, Tricks or treats with the Hilbert matrix, Amer. Math. Monthly, 90 (1983), 301-312.
- Richard K. Guy, Letter to N. J. A. Sloane, Sep 1986.
- John E. Lauer, Letter to N. J. A. Sloane, Dec 1980.
- Sajad Salami, On special matrices related to Cauchy and Toeplitz matrices, Instítuto da Matemática e Estatística, Universidade Estadual do Rio de Janeiro (Brazil, 2019).
- Eric Weisstein's World of Mathematics, Hilbert Matrix.
-
List([0..10],n->Product([1..n-1],k->(2*k+1)*Binomial(2*k,k)^2)); # Muniru A Asiru, Jul 07 2018
-
H=: % @: >: @: (+/~) @: i.
det=: -/ .* NB. Roger Hui, Oct 12 2005
-
with(linalg): A005249 := n-> 1/det(hilbert(n));
-
Table[ 1 / Det[ Table[ 1 / (i + j), {i, 1, n}, {j, 0, n - 1} ]], {n, 1, 10} ]
Table[Denominator[Det[HilbertMatrix[n]]], {n, 0, 12}]//Quiet (* L. Edson Jeffery, Aug 05 2014 *)
Table[BarnesG[2 n + 1]/BarnesG[n + 1]^4, {n, 0, 10}] (* Jan Mangaldan, Sep 22 2021 *)
-
a(n)=n^n*prod(k=1,n-1,(n^2-k^2)^(n-k))/prod(k=0,n-1,k!^2)
-
a(n)=if(n<0,0,1/matdet(mathilbert(n)))
-
a(n)=if(n<0,0,prod(k=0,n-1,(2*k)!*(2*k+1)!/k!^4))
-
def A005249(n):
swing = lambda n: factorial(n)/factorial(n//2)^2
return mul(swing(i) for i in (1..2*n-1))
[A005249(i) for i in (0..10)] # Peter Luschny, Sep 18 2012
A003046
Product of first n Catalan numbers.
Original entry on oeis.org
1, 1, 2, 10, 140, 5880, 776160, 332972640, 476150875200, 2315045555222400, 38883505145515430400, 2285805733484270091494400, 475475022233529990271933132800, 353230394017289429773019124357120000, 944693494975599542562153266945656012800000
Offset: 0
- H. W. Gould, A class of binomial sums and a series transformation, Utilitas Math., 45 (1994), 71-83.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- N. J. A. Sloane, Table of n, a(n) for n = 0..60
- V. Baldoni and M. Vergne, Kostant Partitions Functions and Flow Polytopes, Transform. Groups. 13 (2008), 447-469.
- C. S. Chan et al., On the volume of a certain polytope, Experimental Mathematics, 9 (2000), 91-99.
- S. Corteel, J. S. Kim and K. Mészáros, Flow polytopes with Catalan volumes, C. R. Math., 355 (2017), 248-259.
- Spencer J. Franks, Pamela E. Harris, Kimberly Harry, Jan Kretschmann, and Megan Vance, Counting Parking Sequences and Parking Assortments Through Permutations, arXiv:2301.10830 [math.CO], 2023.
- Bernd C. Kellner, Asymptotic products of binomial and multinomial coefficients revisited, Integers 24 (2024), Article #A59, 10 pp.; arXiv:2312.11369 [math.CO], 2023.
- K. Mészáros and A. H. Morales, Flow polytopes of signed graphs and the Kostant partition function, IMRN 3 (2015), 830-871.
- J. W. Moon and M. Sobel, Enumerating a class of nested group testing procedures, J. Combin. Theory, B23 (1977), 184-188.
- J. W. Moon, R. K. Guy, and N. J. A. Sloane, Correspondence, 1973
- D. Zeilberger, Proof of a Conjecture of Chan, Robbins and Yuen, arXiv:math/9811108 [math.CO], 1998.
- Index to divisibility sequences
-
a003046 n = a003046_list !! n
a003046_list = scanl1 (*) a000108_list
-- Reinhard Zumkeller, Oct 01 2012
-
seq(mul(binomial(2*k, k)/(1+k), k=0..n), n=0..13); # Zerinvary Lajos, Jul 02 2008
-
a[n_] := Product[ CatalanNumber[k], {k, 0, n}]; Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Dec 05 2012 *)
FoldList[Times,1,CatalanNumber[Range[20]]] (* Harvey P. Dale, Apr 29 2013 *)
Table[(2^(n^2+n-1/24) Glaisher^(3/2) BarnesG[n+3/2])/(Exp[1/8] Pi^(n/2+1/4) BarnesG[n+3]), {n, 0, 20}] (* Vladimir Reshetnikov, Nov 11 2015 *)
-
a(n) = prod(k=0, n, binomial(2*k,k)/(k+1)); \\ Michel Marcus, Sep 06 2021
A163085
Product of first n swinging factorials (A056040).
Original entry on oeis.org
1, 1, 2, 12, 72, 2160, 43200, 6048000, 423360000, 266716800000, 67212633600000, 186313420339200000, 172153600393420800000, 2067909047925770649600000, 7097063852481244869427200000
Offset: 0
-
a := proc(n) local i; mul(A056040(i),i=0..n) end;
-
a[0] = 1; a[n_] := a[n] = a[n-1]*n!/Floor[n/2]!^2; Table[a[n], {n, 0, 14}] (* Jean-François Alcover, Jun 26 2013 *)
-
def A056040(n):
swing = lambda n: factorial(n)/factorial(n//2)^2
return mul(swing(i) for i in (0..n))
[A056040(i) for i in (0..14)] # Peter Luschny, Sep 18 2012
A060739
a(n) = (-1)^(n(n-1)/2) * Product_{k=0,...,n-1} (n+k-1)!/((k!)^2 * (n-1-k)!).
Original entry on oeis.org
1, 1, -2, -36, 7200, 17640000, -560105280000, -239102222768640000, 1408147589778024775680000, 116620600756651855983415296000000, -137839975629646325813680872620851200000000, -2352568589682795058651211199786427114330521600000000
Offset: 0
Noam Katz (noamkj(AT)hotmail.com), Apr 25 2001
Here is the matrix A_4 for n=4: [1, 1, 1, 1; 1, 1/2, 1/3, 1/4; 1, 1/3, 1/6, 1/10; 1, 1/4, 1/10, 1/20]; a(4) = 7200 because det(A_4) = 1/7200
- Harry J. Smith, Table of n, a(n) for n=0,...,43
- T. M. Richardson, The Reciprocal Pascal Matrix, arXiv preprint arXiv:1405.6315 [math.CO], 2014.
- Doron Zeilberger, Reverend Charles to the aid of Major Percy and Fields-Medalist Enrico, arXiv:1405.6315 [math.CO], 2014.
- Doron Zeilberger, Reverend Charles to the aid of Major Percy and Fields-Medalist Enrico, Amer. Math. Monthly 103 (1996), 501-502.
-
A060739 := n->(-1)^(n*(n-1)/2) * mul( (n+k-1)!/((k!)^2 * (n-1-k)!), k=0..n-1);
-
a[n_] := (-1)^(n (n - 1)/2)*Product[ Multinomial[k, k, n - 1 - k], {k, 0, n - 1}]; Table[a[n], {n, 0, 11}] (* Jean-François Alcover, Dec 08 2011, after first formula *)
-
for(n=1,15,print1(1/matdet(matrix(n,n,i,j,i/(j+i))),",")) \\ See Cloitre's comment
-
{ for (n=0, 43, if (n<2, a=1, a=(-1)^(n\2)/matdet(matrix(n-1, n-1, i, j, i/(j+i)))); write("b060739.txt", n, " ", a); ) } \\ Harry J. Smith, Jul 10 2009
-
def A060739(n): return (-1)^(n//2)*A163085(2*(n-1))/factorial(n-1) if n > 0 else 1
[A060739(i) for i in (0..11)] # Peter Luschny, Sep 18 2012
A069640
Let M_n be the n X n matrix with M_n(i,j)=1/(i+j+1); then a(n)=1/det(M_n).
Original entry on oeis.org
3, 240, 378000, 10668672000, 5175372787200000, 42202225467872870400000, 5708700736339601341845504000000, 12701009683686045652926579789004800000000, 462068939479146913162956288390362787269836800000000
Offset: 1
- Wolfram Research, 1991 Mathematica Conference, Elementary Tutorial Notes, Section 1, Introduction to Mathematica, Paul Abbott, page 19.
-
seq(1/LinearAlgebra:-Determinant(LinearAlgebra:-HilbertMatrix(n,n,-1)),n=1..10); # Robert Israel, Sep 26 2018
-
Hilbert[n_Integer] := Table[1/(i + j + 1), {i, n}, {j, n}]; Table[ 1 / Det[ Hilbert[n]], {n, 1, 8}] (* Robert G. Wilson v, Mar 13 2004 *)
Table[(2*n+1)!!*(n!*Product[(2*k)!/k!/(k+1)!,{k,0,n}])^2,{n,1,11}] (* Alexander Adamchuk, May 17 2006 *)
Table[2^(2*n^2+2*n-1/12) * Glaisher^3 * BarnesG[n+3/2]^2 *(n!)^2 *(2*n+1)!!/(E^(1/4)*Pi^(n+1/2)*BarnesG[n+3]^2), {n, 1, 11}] (* Vaclav Kotesovec, Mar 09 2014 *)
-
for(n=1,10,print1(1/matdet(matrix(n,n,i,j,1/(i+j+1))),","))
A174841
Determinant of the symmetric n X n matrix M_n where M_n(j,k) = n^abs(j-k).
Original entry on oeis.org
1, -3, 64, -3375, 331776, -52521875, 12230590464, -3938980639167, 1677721600000000, -913517247483640899, 619173642240000000000, -511324276025564512546607, 505488617542763051300683776
Offset: 1
a(4) = determinant(M_4) = -3375 where M_4 is the matrix
[ 1 4 16 64]
[ 4 1 4 16]
[16 4 1 4]
[64 16 4 1]
- Jerry Glynn and Theodore Gray, The Beginner's Guide to Mathematica Version 4, Cambridge University Press, 2000, p. 76.
-
[ Determinant( SymmetricMatrix( &cat[ [ n^Abs(j-k): k in [1..j] ]: j in [1..n] ] ) ): n in [1..13] ]; // Klaus Brockhaus, Apr 16 2010
-
for n from 1 to 20 do: x:=(1-n^2)^(n-1):print(x):od:
A069704
Let M_2n be the 2n X 2n matrix M_(i,j)=C(2i,j)-C(2j,i) where C(k,l) denotes the binomial coefficients; then a(n)=det(M_2n).
Original entry on oeis.org
9, 2401, 7139584, 7429060864, 8768304271322176, 55287838983612748529926144, 28712457542131501655125523112656896, 597353290725130889841630014909751870078582784
Offset: 1
A090914
Reciprocal of (n+1)! times determinant of n X n matrix whose (i,j)-th element is 1/(i+j).
Original entry on oeis.org
1, 1, 12, 1800, 3528000, 93350880000, 34157460395520000, 176018448722253096960000, 12957844528516872887046144000000, 13783997562964632581368087262085120000000
Offset: 0
-
Table[ 1 / Det[ Table[ 1 / (i + j), {i, 1, n}, {j, 1, n} ]]/(n + 1)!, {n, 1, 10}]
-
a(n)=if(n<0,0,1/((n+1)!*matdet(matrix(n,n,i,j,1/(i+j)))))
A094592
a(n)=1/det(M(n)) where M(n) is the n X n matrix with element 1/binomial(n+i+j,n).
Original entry on oeis.org
1, 3, 900, 16464000, 19061082810000, 1438322180987553878016, 7234500281404807826660044800000, 2467969483765439710971533630106501120000000
Offset: 0
-
a(n)=1/matdet(matrix(n,n,i,j,1/binomial(n+i+j,n)))
Showing 1-9 of 9 results.
Comments