A163086
Product of first n terms of A163085.
Original entry on oeis.org
1, 1, 2, 24, 1728, 3732480, 161243136000, 975198486528000000, 412860031256494080000000000, 110116706384632080236544000000000000000, 7401233839469056679744633202278400000000000000000000
Offset: 0
-
a := proc(n) local i; mul(A163085(i),i=0..n) end;
-
b[0] = 1; b[n_] := b[n] = b[n-1] n! / Floor[n/2]!^2;
a[n_] := Product[b[k], {k, 0, n}];
Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Jul 11 2019 *)
-
def A163086(n):
swing = lambda n: factorial(n)/factorial(n//2)^2
return mul(swing(i+1)^(n-i) for i in (0..n))
[A163086(i) for i in (0..10)] # Peter Luschny, Sep 18 2012
Original entry on oeis.org
1, 1, 1, 2, 3, 18, 60, 1200, 10500, 735000, 18522000, 4667544000, 359400888000, 332086420512000, 81408613942656000, 279394363051195392000, 224737840779305293440000, 2892376010829659126572800000, 7812628980363223707442752000000, 379850021025259936655866602240000000
Offset: 0
Original entry on oeis.org
1, 1, 2, 12, 18, 540, 1200, 168000, 735000, 463050000, 4667544000, 12938431968000, 332086420512000, 3989022083190144000, 279394363051195392000, 14383221809875538780160000, 2892376010829659126572800000, 632822947409421120302862912000000
Offset: 0
A005249
Determinant of inverse Hilbert matrix.
Original entry on oeis.org
1, 1, 12, 2160, 6048000, 266716800000, 186313420339200000, 2067909047925770649600000, 365356847125734485878112256000000, 1028781784378569697887052962909388800000000, 46206893947914691316295628839036278726983680000000000
Offset: 0
The matrix begins:
1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 ...
1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 ...
1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10 ...
1/4 1/5 1/6 1/7 1/8 1/9 1/10 1/11 ...
1/5 1/6 1/7 1/8 1/9 1/10 1/11 1/12 ...
1/6 1/7 1/8 1/9 1/10 1/11 1/12 1/13 ...
- Philip J. Davis, Interpolation and Approximation, Dover Publications, 1975, p. 288.
- Jerry Glynn and Theodore Gray, "The Beginner's Guide to Mathematica Version 4," Cambridge University Press, Cambridge UK, 2000, page 76.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..25
- Man-Duen Choi, Tricks or treats with the Hilbert matrix, Amer. Math. Monthly, 90 (1983), 301-312.
- Richard K. Guy, Letter to N. J. A. Sloane, Sep 1986.
- John E. Lauer, Letter to N. J. A. Sloane, Dec 1980.
- Sajad Salami, On special matrices related to Cauchy and Toeplitz matrices, Instítuto da Matemática e Estatística, Universidade Estadual do Rio de Janeiro (Brazil, 2019).
- Eric Weisstein's World of Mathematics, Hilbert Matrix.
-
List([0..10],n->Product([1..n-1],k->(2*k+1)*Binomial(2*k,k)^2)); # Muniru A Asiru, Jul 07 2018
-
H=: % @: >: @: (+/~) @: i.
det=: -/ .* NB. Roger Hui, Oct 12 2005
-
with(linalg): A005249 := n-> 1/det(hilbert(n));
-
Table[ 1 / Det[ Table[ 1 / (i + j), {i, 1, n}, {j, 0, n - 1} ]], {n, 1, 10} ]
Table[Denominator[Det[HilbertMatrix[n]]], {n, 0, 12}]//Quiet (* L. Edson Jeffery, Aug 05 2014 *)
Table[BarnesG[2 n + 1]/BarnesG[n + 1]^4, {n, 0, 10}] (* Jan Mangaldan, Sep 22 2021 *)
-
a(n)=n^n*prod(k=1,n-1,(n^2-k^2)^(n-k))/prod(k=0,n-1,k!^2)
-
a(n)=if(n<0,0,1/matdet(mathilbert(n)))
-
a(n)=if(n<0,0,prod(k=0,n-1,(2*k)!*(2*k+1)!/k!^4))
-
def A005249(n):
swing = lambda n: factorial(n)/factorial(n//2)^2
return mul(swing(i) for i in (1..2*n-1))
[A005249(i) for i in (0..10)] # Peter Luschny, Sep 18 2012
A067689
Inverse of determinant of n X n matrix whose (i,j)-th element is 1/(i+j).
Original entry on oeis.org
1, 2, 72, 43200, 423360000, 67212633600000, 172153600393420800000, 7097063852481244869427200000, 4702142622508202833251304734720000000, 50019370356486058711268515056654483456000000000, 8537000898240926708833515201784986712482596782080000000000
Offset: 0
The matrix begins:
1/2 1/3 1/4 1/5 1/6 1/7 1/8 ...
1/3 1/4 1/5 1/6 1/7 1/8 1/9 ...
1/4 1/5 1/6 1/7 1/8 1/9 1/10 ...
1/5 1/6 1/7 1/8 1/9 1/10 1/11 ...
1/6 1/7 1/8 1/9 1/10 1/11 1/12 ...
1/7 1/8 1/9 1/10 1/11 1/12 1/13 ...
- Jerry Glynn and Theodore Gray, "The Beginner's Guide to Mathematica Version 4," Cambridge University Press, Cambridge UK, 2000, page 76.
- G. Pólya and G. Szegő, Aufgaben und Lehrsätze aus der Analysis II, Vierte Auflage, Heidelberger Taschenbücher, Springer, 1971, p. 98, 3. and p. 299, 3.
-
a:= n-> 1/LinearAlgebra[Determinant](Matrix(n, (i,j)-> 1/(i+j))):
seq(a(n), n=0..11); # Alois P. Heinz, Nov 24 2023
-
Table[ 1 / Det[ Table[ 1 / (i + j), {i, 1, n}, {j, 1, n} ]], {n, 1, 10} ]
a[n_] := Product[ k!/Quotient[k, 2]!^2, {k, 0, 2*n}]; Table[a[n], {n, 1, 9}] (* Jean-François Alcover, Oct 17 2013, after Peter Luschny *)
-
a(n)=prod(k=0, n-1, (2*k)!*(2*k+1)!/k!^4)*binomial(2*n,n) \\ Charles R Greathouse IV, Feb 07 2017
-
def A067689(n):
swing = lambda n: factorial(n)/factorial(n//2)^2
return mul(swing(i) for i in (0..2*n))
[A067689(i) for i in (1..9)] # Peter Luschny, Sep 18 2012
A060739
a(n) = (-1)^(n(n-1)/2) * Product_{k=0,...,n-1} (n+k-1)!/((k!)^2 * (n-1-k)!).
Original entry on oeis.org
1, 1, -2, -36, 7200, 17640000, -560105280000, -239102222768640000, 1408147589778024775680000, 116620600756651855983415296000000, -137839975629646325813680872620851200000000, -2352568589682795058651211199786427114330521600000000
Offset: 0
Noam Katz (noamkj(AT)hotmail.com), Apr 25 2001
Here is the matrix A_4 for n=4: [1, 1, 1, 1; 1, 1/2, 1/3, 1/4; 1, 1/3, 1/6, 1/10; 1, 1/4, 1/10, 1/20]; a(4) = 7200 because det(A_4) = 1/7200
- Harry J. Smith, Table of n, a(n) for n=0,...,43
- T. M. Richardson, The Reciprocal Pascal Matrix, arXiv preprint arXiv:1405.6315 [math.CO], 2014.
- Doron Zeilberger, Reverend Charles to the aid of Major Percy and Fields-Medalist Enrico, arXiv:1405.6315 [math.CO], 2014.
- Doron Zeilberger, Reverend Charles to the aid of Major Percy and Fields-Medalist Enrico, Amer. Math. Monthly 103 (1996), 501-502.
-
A060739 := n->(-1)^(n*(n-1)/2) * mul( (n+k-1)!/((k!)^2 * (n-1-k)!), k=0..n-1);
-
a[n_] := (-1)^(n (n - 1)/2)*Product[ Multinomial[k, k, n - 1 - k], {k, 0, n - 1}]; Table[a[n], {n, 0, 11}] (* Jean-François Alcover, Dec 08 2011, after first formula *)
-
for(n=1,15,print1(1/matdet(matrix(n,n,i,j,i/(j+i))),",")) \\ See Cloitre's comment
-
{ for (n=0, 43, if (n<2, a=1, a=(-1)^(n\2)/matdet(matrix(n-1, n-1, i, j, i/(j+i)))); write("b060739.txt", n, " ", a); ) } \\ Harry J. Smith, Jul 10 2009
-
def A060739(n): return (-1)^(n//2)*A163085(2*(n-1))/factorial(n-1) if n > 0 else 1
[A060739(i) for i in (0..11)] # Peter Luschny, Sep 18 2012
A069651
For n >= 1, let M_n be the n X n matrix with M_n(i,j) = i^2/(i+j); then a(n) = 1/det(M_n). Also, a(0) = 1 by convention.
Original entry on oeis.org
1, 2, 18, 1200, 735000, 4667544000, 332086420512000, 279394363051195392000, 2892376010829659126572800000, 379850021025259936655866602240000000, 648304836222110631242066578424390188032000000
Offset: 0
-
Table[1/((2n - 1)!Det[Table[1/(i + j - 1), {i, n}, {j, n}]]), {n, 10}] (* Robert G. Wilson v, Feb 02 2004 *)
Table[(n + 1)!/(2*n + 1)!*Product[Binomial[i, Floor[i/2]], {i, 1, 2*n + 1}], {n, 0, 10}] (* Stefan Steinerberger, Feb 26 2008 *)
-
for(n=1,15,print1(1/matdet(matrix(n,n,i,j,i^2/(j+i))),","))
-
def A069651(n): return A163085(2*n+1)/factorial(2*n+1)
[A069651(n) for n in (0..10)] # Peter Luschny, Sep 18 2012
A069945
Let M_k be the k X k matrix M_k(i,j)=1/binomial(i+n,j); then a(n)=1/det(M_(n+1)).
Original entry on oeis.org
1, -6, -360, 252000, 2222640000, -258768639360000, -410299414270986240000, 9061429740221589431500800000, 2835046804394206618956825845760000000, -12733381268715468286016211650968992153600000000
Offset: 1
-
a[n_] := (-1)^Quotient[n, 2]/(Det[HilbertMatrix[n]] n!); Array[a, 10] (* Jean-François Alcover, Jul 06 2019 *)
-
for(n=0,10,print1(1/matdet(matrix(n+1,n+1,i,j,1/binomial(i+n,j))),","))
-
def A069945(n): return (-1)^(n//2)*mul(binomial(i,i//2) for i in (1..2*n-1))
[A069945(i) for i in (1..11)] # Peter Luschny, Sep 18 2012
A120307
Inverse determinant of n X n matrix M[i,j] = i*j/(i+j-1).
Original entry on oeis.org
1, 3, 60, 10500, 18522000, 359400888000, 81408613942656000, 224737840779305293440000, 7812628980363223707442752000000, 3508978524227146242839564498172672000000
Offset: 1
-
Table[ 1/Det[ Table[ i*j/(i+j-1), {i, n}, {j, n}]], {n,1,12}]
-
def A120307(n): return A163085(2*n)/factorial(2*n)
[A120307(n) for n in (1..10)] # Peter Luschny, Sep 18 2012
Showing 1-9 of 9 results.
Comments