cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A163086 Product of first n terms of A163085.

Original entry on oeis.org

1, 1, 2, 24, 1728, 3732480, 161243136000, 975198486528000000, 412860031256494080000000000, 110116706384632080236544000000000000000, 7401233839469056679744633202278400000000000000000000
Offset: 0

Views

Author

Peter Luschny, Jul 21 2009

Keywords

Crossrefs

Programs

  • Maple
    a := proc(n) local i; mul(A163085(i),i=0..n) end;
  • Mathematica
    b[0] = 1; b[n_] := b[n] = b[n-1] n! / Floor[n/2]!^2;
    a[n_] := Product[b[k], {k, 0, n}];
    Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Jul 11 2019 *)
  • Sage
    def A163086(n):
        swing = lambda n: factorial(n)/factorial(n//2)^2
        return mul(swing(i+1)^(n-i) for i in (0..n))
    [A163086(i) for i in (0..10)] # Peter Luschny, Sep 18 2012

Formula

a(n) = product_{i=0..n} A056040(i+1)^(n-i). - Peter Luschny, Sep 18 2012

A216628 a(n) = A163085(n)/n!.

Original entry on oeis.org

1, 1, 1, 2, 3, 18, 60, 1200, 10500, 735000, 18522000, 4667544000, 359400888000, 332086420512000, 81408613942656000, 279394363051195392000, 224737840779305293440000, 2892376010829659126572800000, 7812628980363223707442752000000, 379850021025259936655866602240000000
Offset: 0

Views

Author

Peter Luschny, Sep 18 2012

Keywords

Crossrefs

Cf. A056040.

Programs

  • Sage
    def A216628(n):
        swing = lambda n: factorial(n)/factorial(n//2)^2
        A163085 = lambda n: mul(swing(i) for i in (0..n))
        return A163085(n)/factorial(n)
    [A216628(n) for n in (0..19)]

A216629 a(n) = A163085(n)/(floor(n/2)!)^2.

Original entry on oeis.org

1, 1, 2, 12, 18, 540, 1200, 168000, 735000, 463050000, 4667544000, 12938431968000, 332086420512000, 3989022083190144000, 279394363051195392000, 14383221809875538780160000, 2892376010829659126572800000, 632822947409421120302862912000000
Offset: 0

Views

Author

Peter Luschny, Sep 18 2012

Keywords

Crossrefs

Cf. A069651.

Programs

A005249 Determinant of inverse Hilbert matrix.

Original entry on oeis.org

1, 1, 12, 2160, 6048000, 266716800000, 186313420339200000, 2067909047925770649600000, 365356847125734485878112256000000, 1028781784378569697887052962909388800000000, 46206893947914691316295628839036278726983680000000000
Offset: 0

Views

Author

Keywords

Comments

a(n) = 1/determinant of M(n)*(-1)^floor(n/2) where M(n) is the n X n matrix m(i,j)=1/(i-j+n).
For n>=2, a(n) = Product k=1...(n-1) (2k+1) * C(2k,k)^2. This is a special case of the Cauchy determinant formula. A similar formula exists also for A067689. - Sharon Sela (sharonsela(AT)hotmail.com), Mar 23 2002

Examples

			The matrix begins:
  1    1/2  1/3  1/4  1/5  1/6  1/7  1/8  ...
  1/2  1/3  1/4  1/5  1/6  1/7  1/8  1/9  ...
  1/3  1/4  1/5  1/6  1/7  1/8  1/9  1/10 ...
  1/4  1/5  1/6  1/7  1/8  1/9  1/10 1/11 ...
  1/5  1/6  1/7  1/8  1/9  1/10 1/11 1/12 ...
  1/6  1/7  1/8  1/9  1/10 1/11 1/12 1/13 ...
		

References

  • Philip J. Davis, Interpolation and Approximation, Dover Publications, 1975, p. 288.
  • Jerry Glynn and Theodore Gray, "The Beginner's Guide to Mathematica Version 4," Cambridge University Press, Cambridge UK, 2000, page 76.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    List([0..10],n->Product([1..n-1],k->(2*k+1)*Binomial(2*k,k)^2)); # Muniru A Asiru, Jul 07 2018
  • J
    H=: % @: >: @: (+/~) @: i.
    det=: -/ .* NB. Roger Hui, Oct 12 2005
    
  • Maple
    with(linalg): A005249 := n-> 1/det(hilbert(n));
  • Mathematica
    Table[ 1 / Det[ Table[ 1 / (i + j), {i, 1, n}, {j, 0, n - 1} ]], {n, 1, 10} ]
    Table[Denominator[Det[HilbertMatrix[n]]], {n, 0, 12}]//Quiet (* L. Edson Jeffery, Aug 05 2014 *)
    Table[BarnesG[2 n + 1]/BarnesG[n + 1]^4, {n, 0, 10}] (* Jan Mangaldan, Sep 22 2021 *)
  • PARI
    a(n)=n^n*prod(k=1,n-1,(n^2-k^2)^(n-k))/prod(k=0,n-1,k!^2)
    
  • PARI
    a(n)=if(n<0,0,1/matdet(mathilbert(n)))
    
  • PARI
    a(n)=if(n<0,0,prod(k=0,n-1,(2*k)!*(2*k+1)!/k!^4))
    
  • Sage
    def A005249(n):
        swing = lambda n: factorial(n)/factorial(n//2)^2
        return mul(swing(i) for i in (1..2*n-1))
    [A005249(i) for i in (0..10)] # Peter Luschny, Sep 18 2012
    

Formula

a(n) = n^n*(Product_{k=1..n-1} (n^2 - k^2)^(n-k))/Product_{k=0..n-1} k!^2. - Benoit Cloitre, Jan 15 2003
The reciprocal of the determinant of an n X n matrix whose element at T(i, j) is 1/(i+j-1).
a(n+1) = a(n)*A000515(n) = a(n)*(2*n+1)*binomial(2n,n)^2. - Enrique Pérez Herrero, Mar 31 2010 [In other words, the partial products of sequence A000515. - N. J. A. Sloane, Jul 10 2015]
a(n) = n!*Product_{i=1..2n-1} binomial(i,floor(i/2)) = n!*|A069945(n)|. - Peter Luschny, Sep 18 2012
a(n) = Product_{i=1..2n-1} A056040(i) = A163085(2*n-1). - Peter Luschny, Sep 18 2012
a(n) ~ A^3 * 2^(2*n^2 - n - 1/12) * n^(1/4) / (exp(1/4) * Pi^n), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, May 01 2015
a(n) = A000178(2*n-1)/A000178(n-1)^4, for n >= 1. - Amiram Eldar, Oct 20 2022

Extensions

1 more term from Jud McCranie, Jul 16 2000
Additional comments from Robert G. Wilson v, Feb 06 2002

A067689 Inverse of determinant of n X n matrix whose (i,j)-th element is 1/(i+j).

Original entry on oeis.org

1, 2, 72, 43200, 423360000, 67212633600000, 172153600393420800000, 7097063852481244869427200000, 4702142622508202833251304734720000000, 50019370356486058711268515056654483456000000000, 8537000898240926708833515201784986712482596782080000000000
Offset: 0

Views

Author

Robert G. Wilson v, Feb 04 2002

Keywords

Examples

			The matrix begins:
1/2 1/3 1/4 1/5 1/6 1/7 1/8 ...
1/3 1/4 1/5 1/6 1/7 1/8 1/9 ...
1/4 1/5 1/6 1/7 1/8 1/9 1/10 ...
1/5 1/6 1/7 1/8 1/9 1/10 1/11 ...
1/6 1/7 1/8 1/9 1/10 1/11 1/12 ...
1/7 1/8 1/9 1/10 1/11 1/12 1/13 ...
		

References

  • Jerry Glynn and Theodore Gray, "The Beginner's Guide to Mathematica Version 4," Cambridge University Press, Cambridge UK, 2000, page 76.
  • G. Pólya and G. Szegő, Aufgaben und Lehrsätze aus der Analysis II, Vierte Auflage, Heidelberger Taschenbücher, Springer, 1971, p. 98, 3. and p. 299, 3.

Crossrefs

Cf. A000984, A060739. See A005249 for a formula.

Programs

  • Maple
    a:= n-> 1/LinearAlgebra[Determinant](Matrix(n, (i,j)-> 1/(i+j))):
    seq(a(n), n=0..11);  # Alois P. Heinz, Nov 24 2023
  • Mathematica
    Table[ 1 / Det[ Table[ 1 / (i + j), {i, 1, n}, {j, 1, n} ]], {n, 1, 10} ]
    a[n_] := Product[ k!/Quotient[k, 2]!^2, {k, 0, 2*n}]; Table[a[n], {n, 1, 9}] (* Jean-François Alcover, Oct 17 2013, after Peter Luschny *)
  • PARI
    a(n)=prod(k=0, n-1, (2*k)!*(2*k+1)!/k!^4)*binomial(2*n,n) \\ Charles R Greathouse IV, Feb 07 2017
  • Sage
    def A067689(n):
        swing = lambda n: factorial(n)/factorial(n//2)^2
        return mul(swing(i) for i in (0..2*n))
    [A067689(i) for i in (1..9)] # Peter Luschny, Sep 18 2012
    

Formula

Equals A005249 * A000984. - Sharon Sela (sharonsela(AT)hotmail.com), Apr 18 2002
a(n) = A163085(2*n). - Peter Luschny, Sep 18 2012
a(n) ~ A^3 * 2^(2*n^2 + n - 1/12) / (exp(1/4) * n^(1/4) * Pi^(n+1/2)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, May 01 2015
a(n) = Prod_{i=1..n}(Prod_{j=1..n} (i+j)) / Prod_{i=1..n}(Prod_{j=1..n-1} (i-j)^2), n >= 1. See the Pólya and Szegő reference (special case) with the original Cauchy reference. - Wolfdieter Lang, Apr 25 2016

Extensions

a(0)=1 prepended by Alois P. Heinz, Nov 24 2023

A060739 a(n) = (-1)^(n(n-1)/2) * Product_{k=0,...,n-1} (n+k-1)!/((k!)^2 * (n-1-k)!).

Original entry on oeis.org

1, 1, -2, -36, 7200, 17640000, -560105280000, -239102222768640000, 1408147589778024775680000, 116620600756651855983415296000000, -137839975629646325813680872620851200000000, -2352568589682795058651211199786427114330521600000000
Offset: 0

Views

Author

Noam Katz (noamkj(AT)hotmail.com), Apr 25 2001

Keywords

Comments

Let A_n be the matrix of size n X n defined by: A_n[i,j] = 1/(binomial coefficient i+j-2 over i-1) = 1/C(i+j-2,i-1) where 1 <= i,j <= n. The diagonals of this matrix are the reciprocals of the entries in the Pascal triangle. Then a(n) = 1/det(A_n) = det((A_n)^(-1)).
From the formula for a(n) it follows that the determinant of (A_n)^(-1) is an integer. By inspecting the values of (A_n)^(-1) for small values of n it looks like (A_n)^(-1) is actually a matrix of integers but I do not have a proof of this fact.
Let M_n be the n X n matrix with M_n(i,j)=i/(i+j); then |a(n-1)|=1/det(M_n). - Benoit Cloitre, Apr 21 2002
Also related to the multinomial coefficients (i+j)!/i!/j! : abs(a(n))=(1/detQ_n-1) where Q_n is the n X n matrix q(i,j)=i!j!/(i+j)! - Benoit Cloitre, May 30 2002
From Alexander Adamchuk, Nov 14 2009: (Start)
Also a(n) = (-1)^(n(n-1)/2) * Product[ Binomial[2k,k]^2/2, {k,1,n-1} ].
It is simpler definition of a(n).
It follows from the observation that Sqrt[ Abs[ a(n+1)/a(n)/2 ] ] = {1, 3, 10, 35, 126, 462, ...} = C(2n+1, n+1) = A001700. (End)

Examples

			Here is the matrix A_4 for n=4: [1, 1, 1, 1; 1, 1/2, 1/3, 1/4; 1, 1/3, 1/6, 1/10; 1, 1/4, 1/10, 1/20]; a(4) = 7200 because det(A_4) = 1/7200
		

Crossrefs

Cf. A001700. [Alexander Adamchuk, Nov 14 2009]

Programs

  • Maple
    A060739 := n->(-1)^(n*(n-1)/2) * mul( (n+k-1)!/((k!)^2 * (n-1-k)!), k=0..n-1);
  • Mathematica
    a[n_] := (-1)^(n (n - 1)/2)*Product[ Multinomial[k, k, n - 1 - k], {k, 0, n - 1}]; Table[a[n], {n, 0, 11}] (* Jean-François Alcover, Dec 08 2011, after first formula *)
  • PARI
    for(n=1,15,print1(1/matdet(matrix(n,n,i,j,i/(j+i))),",")) \\ See Cloitre's comment
    
  • PARI
    { for (n=0, 43, if (n<2, a=1, a=(-1)^(n\2)/matdet(matrix(n-1, n-1, i, j, i/(j+i)))); write("b060739.txt", n, " ", a); ) } \\ Harry J. Smith, Jul 10 2009
    
  • Sage
    def A060739(n): return (-1)^(n//2)*A163085(2*(n-1))/factorial(n-1) if n > 0 else 1
    [A060739(i) for i in (0..11)] # Peter Luschny, Sep 18 2012

Formula

If Multinomial[a, b, c] denotes the multinomial coefficient (a+b+c)! / (a! * b! * c!) (which is an integer) then : a(n) = (-1)^(n(n-1)/2) * Product k=0, ..., n-1 Multinomial[k, k, n-1-k] = (-1)^(n(n-1)/2) * product k=0, ..., n-1 (n+k-1)!/((k!)^2 * (n-1-k)!)
a(n) = (-1)^(n(n-1)/2) * Product[ Binomial[2k,k]^2/2, {k,1,n-1} ]. [Alexander Adamchuk, Nov 14 2009]
|a(n)| = A163085(2*(n-1))/(n-1)! for n > 0. - Peter Luschny, Sep 18 2012
|a(n)| ~ A^3 * 2^(2*n^2 - 3*n + 5/12) * exp(n - 1/4) / (Pi^n * n^(n - 1/4)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, May 19 2020

A069651 For n >= 1, let M_n be the n X n matrix with M_n(i,j) = i^2/(i+j); then a(n) = 1/det(M_n). Also, a(0) = 1 by convention.

Original entry on oeis.org

1, 2, 18, 1200, 735000, 4667544000, 332086420512000, 279394363051195392000, 2892376010829659126572800000, 379850021025259936655866602240000000, 648304836222110631242066578424390188032000000
Offset: 0

Views

Author

Benoit Cloitre, Apr 21 2002

Keywords

Comments

Also, determinant of the inverse of the (n+1)-st Hilbert matrix, divided by (2n+1)!. - Robert G. Wilson v, Feb 02 2004
Also, inverse of determinant of the matrix M_n(i,j) = i*j/(i+j). - Harry Richman, Aug 19 2019

Crossrefs

Programs

  • Mathematica
    Table[1/((2n - 1)!Det[Table[1/(i + j - 1), {i, n}, {j, n}]]), {n, 10}] (* Robert G. Wilson v, Feb 02 2004 *)
    Table[(n + 1)!/(2*n + 1)!*Product[Binomial[i, Floor[i/2]], {i, 1, 2*n + 1}], {n, 0, 10}] (* Stefan Steinerberger, Feb 26 2008 *)
  • PARI
    for(n=1,15,print1(1/matdet(matrix(n,n,i,j,i^2/(j+i))),","))
    
  • Sage
    def A069651(n): return A163085(2*n+1)/factorial(2*n+1)
    [A069651(n) for n in (0..10)] # Peter Luschny, Sep 18 2012

Formula

a(n) = A005249(n)/A000142(n). - Robert G. Wilson v, Feb 02 2004
a(n) = (n+1)!/(2*n+1)! * Product[Binomial(i,Floor(i/2)), {i,1,2*n+1}]. - Stefan Steinerberger, Feb 26 2008
a(n) = A163085(2*n+1)/(2*n+1)! = A163085(2*n)/factorial(n)^2. - Peter Luschny, Sep 18 2012

Extensions

Edited by N. J. A. Sloane, Feb 25 2008

A069945 Let M_k be the k X k matrix M_k(i,j)=1/binomial(i+n,j); then a(n)=1/det(M_(n+1)).

Original entry on oeis.org

1, -6, -360, 252000, 2222640000, -258768639360000, -410299414270986240000, 9061429740221589431500800000, 2835046804394206618956825845760000000, -12733381268715468286016211650968992153600000000
Offset: 1

Views

Author

Benoit Cloitre, Apr 27 2002

Keywords

Comments

If k>n+1 det(M_k)=0

Crossrefs

Programs

  • Mathematica
    a[n_] := (-1)^Quotient[n, 2]/(Det[HilbertMatrix[n]] n!); Array[a, 10] (* Jean-François Alcover, Jul 06 2019 *)
  • PARI
    for(n=0,10,print1(1/matdet(matrix(n+1,n+1,i,j,1/binomial(i+n,j))),","))
    
  • Sage
    def A069945(n): return (-1)^(n//2)*mul(binomial(i,i//2) for i in (1..2*n-1))
    [A069945(i) for i in (1..11)] # Peter Luschny, Sep 18 2012

Formula

|a(n)| = det(M^(-1)), where M is an n X n matrix with M[i, j]=i/(i+j-1) (or j/(i+j-1)). |a(n)| = 1/det(HilbertMatrix(n))/n! = A005249(n)/n!. - Vladeta Jovovic, Jul 26 2003
|a(n)| = Product_{i=1..2n-1} binomial(i,floor(i/2)). - Peter Luschny, Sep 18 2012
|a(n)| = (Product_{i=1..2n-1} A056040(i))/n! = A163085(2*n-1)/n!. - Peter Luschny, Sep 18 2012

A120307 Inverse determinant of n X n matrix M[i,j] = i*j/(i+j-1).

Original entry on oeis.org

1, 3, 60, 10500, 18522000, 359400888000, 81408613942656000, 224737840779305293440000, 7812628980363223707442752000000, 3508978524227146242839564498172672000000
Offset: 1

Views

Author

Alexander Adamchuk, Jul 15 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Table[ 1/Det[ Table[ i*j/(i+j-1), {i, n}, {j, n}]], {n,1,12}]
  • Sage
    def A120307(n): return A163085(2*n)/factorial(2*n)
    [A120307(n) for n in (1..10)] # Peter Luschny, Sep 18 2012

Formula

a(n) = 1/Det[ Table[ i*j/(i+j-1), {i, n}, {j, n}]]. a(n+1)/a(n) = A000891[n] = (2n)!(2n+1)! / (n! (n+1)!)^2 = (2n+1)*CatalanNumber[n]^2 = (2n+1)*A000108[n]^2 = C(2n+1,n+1)*CatalanNumber[n] = A001700[n]*A000108[n].
a(n) = A163085(2*n)/(2*n)!. - Peter Luschny, Sep 18 2012
Showing 1-9 of 9 results.