A003046
Product of first n Catalan numbers.
Original entry on oeis.org
1, 1, 2, 10, 140, 5880, 776160, 332972640, 476150875200, 2315045555222400, 38883505145515430400, 2285805733484270091494400, 475475022233529990271933132800, 353230394017289429773019124357120000, 944693494975599542562153266945656012800000
Offset: 0
- H. W. Gould, A class of binomial sums and a series transformation, Utilitas Math., 45 (1994), 71-83.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- N. J. A. Sloane, Table of n, a(n) for n = 0..60
- V. Baldoni and M. Vergne, Kostant Partitions Functions and Flow Polytopes, Transform. Groups. 13 (2008), 447-469.
- C. S. Chan et al., On the volume of a certain polytope, Experimental Mathematics, 9 (2000), 91-99.
- S. Corteel, J. S. Kim and K. Mészáros, Flow polytopes with Catalan volumes, C. R. Math., 355 (2017), 248-259.
- Spencer J. Franks, Pamela E. Harris, Kimberly Harry, Jan Kretschmann, and Megan Vance, Counting Parking Sequences and Parking Assortments Through Permutations, arXiv:2301.10830 [math.CO], 2023.
- Bernd C. Kellner, Asymptotic products of binomial and multinomial coefficients revisited, Integers 24 (2024), Article #A59, 10 pp.; arXiv:2312.11369 [math.CO], 2023.
- K. Mészáros and A. H. Morales, Flow polytopes of signed graphs and the Kostant partition function, IMRN 3 (2015), 830-871.
- J. W. Moon and M. Sobel, Enumerating a class of nested group testing procedures, J. Combin. Theory, B23 (1977), 184-188.
- J. W. Moon, R. K. Guy, and N. J. A. Sloane, Correspondence, 1973
- D. Zeilberger, Proof of a Conjecture of Chan, Robbins and Yuen, arXiv:math/9811108 [math.CO], 1998.
- Index to divisibility sequences
-
a003046 n = a003046_list !! n
a003046_list = scanl1 (*) a000108_list
-- Reinhard Zumkeller, Oct 01 2012
-
seq(mul(binomial(2*k, k)/(1+k), k=0..n), n=0..13); # Zerinvary Lajos, Jul 02 2008
-
a[n_] := Product[ CatalanNumber[k], {k, 0, n}]; Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Dec 05 2012 *)
FoldList[Times,1,CatalanNumber[Range[20]]] (* Harvey P. Dale, Apr 29 2013 *)
Table[(2^(n^2+n-1/24) Glaisher^(3/2) BarnesG[n+3/2])/(Exp[1/8] Pi^(n/2+1/4) BarnesG[n+3]), {n, 0, 20}] (* Vladimir Reshetnikov, Nov 11 2015 *)
-
a(n) = prod(k=0, n, binomial(2*k,k)/(k+1)); \\ Michel Marcus, Sep 06 2021
A098118
a(n) = n!*[x^n] (log(x+1) * Sum_{j=0..n} C(2*n,j)*x^j).
Original entry on oeis.org
1, 7, 74, 1066, 19524, 434568, 11393808, 343976400, 11752855200, 448372820160, 18892607771520, 871406506494720, 43669963405555200, 2362804077652300800, 137275789612950374400, 8523776656311156172800, 563309040416875548364800
Offset: 1
n=2: HilbertMatrix[n,n]
1 1/2
1/2 1/3
so a(2) = (2*2-1)! / 2! * (1 + 1/2 + 1/2 + 1/3) = 7.
The n X n Hilbert matrix begins:
1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 ...
1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 ...
1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10 ...
1/4 1/5 1/6 1/7 1/8 1/9 1/10 1/11 ...
1/5 1/6 1/7 1/8 1/9 1/10 1/11 1/12 ...
1/6 1/7 1/8 1/9 1/10 1/11 1/12 1/13 ...
G.f. = x + 7*x^2 + 74*x^3 + 1066*x^4 + 19524*x^5 + 434568*x^6 + ...
-
A098118 := n -> n!*coeff(series(ln(x+1)*add(binomial(2*n,j)*x^j, j=0..n), x, n+1), x, n): seq(A098118(n),n=1..17); # Peter Luschny, Jan 18 2015
A098118 := n -> hypergeom([1,1,1-n],[2,n+2],1)*n*(2*n)!/(n+1)!:
seq(simplify(A098118(n)), n=1..17); # Peter Luschny, Jun 11 2016
A098118 := n -> sum(abs(Stirling1(n,k))*k*(n+1)^(k-1), k=1..n):
seq(A098118(n), n=1..17); # Ondrej Kutal, Oct 20 2021
-
Table[(2n - 1)!/n! Sum[ 1/(i + j - 1), {i, n}, {j, n}], {n, 17}]
a[ n_] := If[ n < 1, 0, (2 n)! / n! Sum[ -(-1)^k / k, {k, 2 n}]]; (* Michael Somos, Dec 09 2013 *)
a[ n_] := If[ n < 1, 0, (2 n - 1)! / n! Sum[ 1 / (i + j - 1), {i, n}, {j, n}]]; (* Michael Somos, Apr 14 2015 *)
a[ n_] := If[ n < 1, 0, n! SeriesCoefficient[ (Log[ EllipticNomeQ[ m] / (m/16)]) EllipticK[ m] 16^n / (Binomial[2 n, n] 2 Pi), {m, 0, n}]]; (* Michael Somos, Apr 14 2015 *)
a[ n_] := If[ n < 1, 0, (2 n + 1)! / n! SeriesCoefficient[ PolyLog[2, -1] + PolyLog[2, (1 - x)/2] + Log[(1 + x)/2] Log[(1 - x)/2]/2 + Log[(1 + x)/(1 - x)] Log[2]/2, {x, 0, 2 n + 1}]]; (* Michael Somos, Apr 14 2015 *)
-
{a(n) = if( n<1, 0, (2*n)! / n! * sum( k=1, 2*n, -(-1)^k / k))}; /* Michael Somos, Dec 09 2013 */
A082687
Numerator of Sum_{k=1..n} 1/(n+k).
Original entry on oeis.org
1, 7, 37, 533, 1627, 18107, 237371, 95549, 1632341, 155685007, 156188887, 3602044091, 18051406831, 7751493599, 225175759291, 13981692518567, 14000078506967, 98115155543129, 3634060848592973, 3637485804655193
Offset: 1
H'(2n) = H(2n) - H(n) = {1/2, 7/12, 37/60, 533/840, 1627/2520, 18107/27720, 237371/360360, 95549/144144, 1632341/2450448, 155685007/232792560, ...}, where H(n) = A001008/A002805.
n=2: HilbertMatrix(n,n)
1 1/2
1/2 1/3
so a(2) = Numerator(1 + 1/2 + 1/2 + 1/3) = Numerator(7/3) = 7.
The n X n Hilbert matrix begins:
1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 ...
1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 ...
1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10 ...
1/4 1/5 1/6 1/7 1/8 1/9 1/10 1/11 ...
1/5 1/6 1/7 1/8 1/9 1/10 1/11 1/12 ...
1/6 1/7 1/8 1/9 1/10 1/11 1/12 1/13 ...
-
[Numerator((HarmonicNumber(2*n) -HarmonicNumber(n))): n in [1..40]]; // G. C. Greubel, Jul 24 2023
-
a := n -> numer(harmonic(2*n) - harmonic(n)):
seq(a(n), n=1..20); # Peter Luschny, Nov 02 2017
-
Numerator[Sum[1/k,{k,1,2*n}] - Sum[1/k,{k,1,n}]] (* Alexander Adamchuk, Apr 11 2006 *)
Table[Numerator[Sum[1/(i + j - 1), {i, n}, {j, n}]], {n, 20}] (* Alexander Adamchuk, Apr 11 2006 *)
Table[HarmonicNumber[2 n] - HarmonicNumber[n], {n, 20}] // Numerator (* Eric W. Weisstein, Dec 14 2017 *)
-
a(n) = numerator(sum(k=1, n, 1/(n+k))); \\ Michel Marcus, Dec 14 2017
-
[numerator(harmonic_number(2*n,1) - harmonic_number(n,1)) for n in range(1,41)] # G. C. Greubel, Jul 24 2023
A000515
a(n) = (2n)!(2n+1)!/n!^4, or equally (2n+1)*binomial(2n,n)^2.
Original entry on oeis.org
1, 12, 180, 2800, 44100, 698544, 11099088, 176679360, 2815827300, 44914183600, 716830370256, 11445589052352, 182811491808400, 2920656969720000, 46670906271240000, 745904795339462400, 11922821963004219300, 190600129650794094000, 3047248986392325330000
Offset: 0
- E. R. Hansen, A Table of Series and Products, Prentice-Hall, Englewood Cliffs, NJ, 1975, p. 96.
- A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..100
- G. E. Andrews and P. Paule, Some questions concerning computer-generated proofs of a binomial double-sum identity, J. Symbolic Computation 11(1994), 1-7.
- D. Galakhov, A. Mironov and A. Morozov, Wall Crossing Invariants: from quantum mechanics to knots, arXiv preprint arXiv:1410.8482 [hep-th], 2014. See Eq. (A.15).
- R. K. Guy, Letter to N. J. A. Sloane, Sep 1986
- J. E. Lauer, Letter to N. J. A. Sloane, Dec 1980
- D. H. Lehmer, Review of A. N. Lowan et al., "Table of the zeros of the Legendre polynomials of order 1-16...", in Math. Tables Aids Computation (MTAC), 1 (1943-1945), 52-53.
- Pedro J. Miana and Natalia Romero, Moments of combinatorial and Catalan numbers, Journal of Number Theory, Volume 130, Issue 8, August 2010, Pages 1876-1887. See Omega3. Remark 3 p. 1882.
- I. Nemes et al., How to do Monthly problems with your computer, Amer. Math. Monthly, 104 (1997), 505-519.
- Yidong Sun and Fei Ma, Four transformations on the Catalan triangle, arXiv preprint arXiv:1305.2017 [math.CO], 2013 (see Omega_3).
- Yidong Sun and Fei Ma, Some new binomial sums related to the Catalan triangle, Electronic Journal of Combinatorics 21(1) (2014), #P1.33
Cf.
A002894,
A005249,
A002457,
A000108,
A039598,
A024492,
A000894,
A228329,
A000515,
A228330,
A228331,
A228332,
A228333.
-
[(2*n+1)*Binomial(2*n,n)^2: n in [0..25]]; // Vincenzo Librandi, Oct 08 2015
-
with(linalg): for n from 1 to 24 do print(det(hilbert(n))/det(hilbert(n+1))): od;
-
A000515[n_] := (2*n + 1)*Binomial[2 n, n]^2 (* Enrique Pérez Herrero, Mar 31 2010 *)
Table[(2 n + 1) (n + 1)^2 CatalanNumber[n]^2, {n, 0, 18}] (* Jan Mangaldan, Sep 23 2021 *)
-
vector(100, n, n--; (2*n+1)*binomial(2*n,n)^2) \\ Altug Alkan, Oct 08 2015
A067689
Inverse of determinant of n X n matrix whose (i,j)-th element is 1/(i+j).
Original entry on oeis.org
1, 2, 72, 43200, 423360000, 67212633600000, 172153600393420800000, 7097063852481244869427200000, 4702142622508202833251304734720000000, 50019370356486058711268515056654483456000000000, 8537000898240926708833515201784986712482596782080000000000
Offset: 0
The matrix begins:
1/2 1/3 1/4 1/5 1/6 1/7 1/8 ...
1/3 1/4 1/5 1/6 1/7 1/8 1/9 ...
1/4 1/5 1/6 1/7 1/8 1/9 1/10 ...
1/5 1/6 1/7 1/8 1/9 1/10 1/11 ...
1/6 1/7 1/8 1/9 1/10 1/11 1/12 ...
1/7 1/8 1/9 1/10 1/11 1/12 1/13 ...
- Jerry Glynn and Theodore Gray, "The Beginner's Guide to Mathematica Version 4," Cambridge University Press, Cambridge UK, 2000, page 76.
- G. Pólya and G. Szegő, Aufgaben und Lehrsätze aus der Analysis II, Vierte Auflage, Heidelberger Taschenbücher, Springer, 1971, p. 98, 3. and p. 299, 3.
-
a:= n-> 1/LinearAlgebra[Determinant](Matrix(n, (i,j)-> 1/(i+j))):
seq(a(n), n=0..11); # Alois P. Heinz, Nov 24 2023
-
Table[ 1 / Det[ Table[ 1 / (i + j), {i, 1, n}, {j, 1, n} ]], {n, 1, 10} ]
a[n_] := Product[ k!/Quotient[k, 2]!^2, {k, 0, 2*n}]; Table[a[n], {n, 1, 9}] (* Jean-François Alcover, Oct 17 2013, after Peter Luschny *)
-
a(n)=prod(k=0, n-1, (2*k)!*(2*k+1)!/k!^4)*binomial(2*n,n) \\ Charles R Greathouse IV, Feb 07 2017
-
def A067689(n):
swing = lambda n: factorial(n)/factorial(n//2)^2
return mul(swing(i) for i in (0..2*n))
[A067689(i) for i in (1..9)] # Peter Luschny, Sep 18 2012
A278847
a(n) = permanent M_n where M_n is the n X n matrix m(i,j) = i^2 + j^2.
Original entry on oeis.org
1, 2, 41, 3176, 620964, 246796680, 174252885732, 199381727959680, 345875291854507584, 864860593764292790400, 2996169331694350840741440, 13929521390709644084719495680, 84659009841182126038701730464000, 658043094413184868424932006273344000
Offset: 0
-
with(LinearAlgebra):
a:= n-> `if`(n=0, 1, Permanent(Matrix(n, (i, j)-> i^2+j^2))):
seq(a(n), n=0..16); # after Alois P. Heinz
-
Flatten[{1, Table[Permanent[Table[i^2+j^2, {i, 1, n}, {j, 1, n}]], {n, 1, 15}]}]
-
a(n)={matpermanent(matrix(n, n, i, j, i^2 + j^2))} \\ Andrew Howroyd, Aug 21 2018
A117731
Numerator of the fraction n*Sum_{k=1..n} 1/(n+k).
Original entry on oeis.org
1, 7, 37, 533, 1627, 18107, 237371, 95549, 1632341, 155685007, 156188887, 3602044091, 18051406831, 54260455193, 225175759291, 13981692518567, 14000078506967, 98115155543129, 3634060848592973, 3637485804655193
Offset: 1
The first few fractions are 1/2, 7/6, 37/20, 533/210, 1627/504, 18107/4620, 237371/51480, ... = A117731/A296519.
For n=2, the n X n Hilbert matrix is
1 1/2
1/2 1/3
Thus, a(2) = numerator(1 + 1/2 + 1/2 + 1/3) = numerator(7/3) = 7.
The n X n Hilbert matrix begins as follows:
1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 ...
1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 ...
1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10 ...
1/4 1/5 1/6 1/7 1/8 1/9 1/10 1/11 ...
1/5 1/6 1/7 1/8 1/9 1/10 1/11 1/12 ...
1/6 1/7 1/8 1/9 1/10 1/11 1/12 1/13 ...
...
-
[Numerator(n*(HarmonicNumber(2*n) -HarmonicNumber(n))): n in [1..40]]; // G. C. Greubel, Jul 24 2023
-
Numerator[Table[n Sum[1/(n + k), {k, n}], {n, 1, 100}]]
Numerator[Table[Sum[Sum[1/(i + j - 1), {i, n}], {j, n}], {n, 30}]] (* Alexander Adamchuk, Apr 23 2006 *)
Table[n (HarmonicNumber[2 n] - HarmonicNumber[n]), {n, 20}] // Numerator (* Eric W. Weisstein, Dec 14 2017 *)
-
a(n) = numerator(n*sum(k=1, n, 1/(n+k))); \\ Michel Marcus, Dec 14 2017
-
[numerator(n*(harmonic_number(2*n,1) - harmonic_number(n,1))) for n in range(1,41)] # G. C. Greubel, Jul 24 2023
A163085
Product of first n swinging factorials (A056040).
Original entry on oeis.org
1, 1, 2, 12, 72, 2160, 43200, 6048000, 423360000, 266716800000, 67212633600000, 186313420339200000, 172153600393420800000, 2067909047925770649600000, 7097063852481244869427200000
Offset: 0
-
a := proc(n) local i; mul(A056040(i),i=0..n) end;
-
a[0] = 1; a[n_] := a[n] = a[n-1]*n!/Floor[n/2]!^2; Table[a[n], {n, 0, 14}] (* Jean-François Alcover, Jun 26 2013 *)
-
def A056040(n):
swing = lambda n: factorial(n)/factorial(n//2)^2
return mul(swing(i) for i in (0..n))
[A056040(i) for i in (0..14)] # Peter Luschny, Sep 18 2012
A278845
a(n) = permanent M_n where M_n is the n X n matrix m(i,j) = (i+j)^2.
Original entry on oeis.org
1, 4, 145, 19016, 6176676, 4038562000, 4664347807268, 8698721212922496, 24535712762777208384, 99585504924929052560640, 559305193643176161735904320, 4211594966980674975033969246720, 41428564066728305721531962537124096, 520897493876353116313789796095643304960
Offset: 0
-
with(LinearAlgebra):
a:= n-> `if`(n=0, 1, Permanent(Matrix(n, (i, j)-> (i+j)^2))):
seq(a(n), n=0..16); # Vaclav Kotesovec, Nov 29 2016, after Alois P. Heinz
-
Flatten[{1, Table[Permanent[Table[(i+j)^2, {i, 1, n}, {j, 1, n}]], {n, 1, 15}]}]
-
{a(n) = matpermanent(matrix(n, n, i, j, (i+j)^2))}
for(n=0, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Aug 09 2021
A107254
a(n) = SF(2n-1)/SF(n-1)^2 where SF = A000178.
Original entry on oeis.org
1, 1, 12, 8640, 870912000, 22122558259200000, 222531556847250309120000000, 1280394777025250130271722799104000000000, 5746332926632566442385615219551212618645504000000000000
Offset: 0
a(3) = 1!*2!*3!*4!*5!/(1!*2!*1!*2!) = 34560/4 = 8640.
n = 2: HilbertMatrix[n,n]
1/1 1/2
1/2 1/3
so a(2) = 1 / (1 * 1/2 * 1/2 * 1/3) = 12.
The n X n Hilbert matrix begins:
1/1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 ...
1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 ...
1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10 ...
1/4 1/5 1/6 1/7 1/8 1/9 1/10 1/11 ...
1/5 1/6 1/7 1/8 1/9 1/10 1/11 1/12 ...
1/6 1/7 1/8 1/9 1/10 1/11 1/12 1/13 ...
-
A107254:= func< n | n eq 0 select 1 else (&*[Factorial(n+j)/Factorial(j): j in [0..n-1]]) >;
[A107254(n): n in [0..12]]; // G. C. Greubel, Apr 21 2021
-
a:= n-> mul((n+i)!/i!, i=0..n-1):
seq(a(n), n=0..10); # Alois P. Heinz, Jul 23 2012
-
Table[Product[(i+j-1),{i,1,n},{j,1,n}], {n,1,10}] (* Alexander Adamchuk, Apr 12 2006 *)
Table[n!*BarnesG[2n+1]/(BarnesG[n+2]*BarnesG[n+1]), {n,0,12}] (* G. C. Greubel, Apr 21 2021 *)
-
a = lambda n: prod(rising_factorial(k,n) for k in (1..n))
print([a(n) for n in (0..10)]) # Peter Luschny, Nov 29 2015
Showing 1-10 of 36 results.
Comments