cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 36 results. Next

A003046 Product of first n Catalan numbers.

Original entry on oeis.org

1, 1, 2, 10, 140, 5880, 776160, 332972640, 476150875200, 2315045555222400, 38883505145515430400, 2285805733484270091494400, 475475022233529990271933132800, 353230394017289429773019124357120000, 944693494975599542562153266945656012800000
Offset: 0

Views

Author

Keywords

Comments

The volume of a certain polytope (see Chan et al. reference). However, no combinatorial explanation for this is known.

References

  • H. W. Gould, A class of binomial sums and a series transformation, Utilitas Math., 45 (1994), 71-83.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a003046 n = a003046_list !! n
    a003046_list = scanl1 (*) a000108_list
    -- Reinhard Zumkeller, Oct 01 2012
    
  • Maple
    seq(mul(binomial(2*k, k)/(1+k), k=0..n), n=0..13); # Zerinvary Lajos, Jul 02 2008
  • Mathematica
    a[n_] := Product[ CatalanNumber[k], {k, 0, n}]; Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Dec 05 2012 *)
    FoldList[Times,1,CatalanNumber[Range[20]]] (* Harvey P. Dale, Apr 29 2013 *)
    Table[(2^(n^2+n-1/24) Glaisher^(3/2) BarnesG[n+3/2])/(Exp[1/8] Pi^(n/2+1/4) BarnesG[n+3]), {n, 0, 20}] (* Vladimir Reshetnikov, Nov 11 2015 *)
  • PARI
    a(n) = prod(k=0, n, binomial(2*k,k)/(k+1)); \\ Michel Marcus, Sep 06 2021

Formula

a(n) = C(0)*C(1)*...*C(n), C() = A000108 = Catalan numbers.
a(n) = sqrt((2^n)*A069640(n)/(2*n+1)!/n!), n>0, where A069640(n) is an inverse determinant of the n X n Hilbert-like Matrix with elements M(i,j)=1/(i+j+1). - Alexander Adamchuk, May 17 2006
a(n) ~ A^(3/2) * 2^(n^2 + n - 19/24) * exp(3*n/2 - 1/8) / (n^(3*n/2 + 15/8) * Pi^(n/2+1)), where A = 1.2824271291... is the Glaisher-Kinkelin constant (see A074962). - Vaclav Kotesovec, Nov 13 2014
a(n) = A^(3/2)*2^(n^2 + n - 1/24)*BarnesG(n+3/2) / (exp(1/8)*Pi^(n/2 + 1/4)*BarnesG(n+3)), where BarnesG( ) is the Barnes G-function and A is the Glaisher-Kinkelin constant (A074962). - Ilya Gutkovskiy, Mar 16 2017
For n > 0, a(n) = 2^((n+1)/2) * sqrt(BarnesG(2*n)) * Gamma(2*n) / (n^2 * (n+1) * BarnesG(n)^2 * Gamma(n)^(9/2)). - Vaclav Kotesovec, Nov 27 2024

Extensions

a(15) added by Harvey P. Dale, Apr 29 2013
Typo in second formula corrected by Vaclav Kotesovec, Nov 13 2014
Links added by Alejandro H. Morales, Jan 26 2020

A098118 a(n) = n!*[x^n] (log(x+1) * Sum_{j=0..n} C(2*n,j)*x^j).

Original entry on oeis.org

1, 7, 74, 1066, 19524, 434568, 11393808, 343976400, 11752855200, 448372820160, 18892607771520, 871406506494720, 43669963405555200, 2362804077652300800, 137275789612950374400, 8523776656311156172800, 563309040416875548364800
Offset: 1

Views

Author

Alexander Adamchuk, Oct 25 2004

Keywords

Comments

Previous name was: Sum of all matrix elements of n X n Hilbert matrix M(i,j) = 1/(i+j-1) (i,j = 1..n) multiplied by (2*n-1)!/n!.
Let A(i, j) denote an infinite array such that the i-th row of this array is the sequence obtained by applying the partial sum operator i times to the harmonic sequence. For example, the first row starts as 1, 5/2, 13/3, ..., and the next row begins with 1, 7/2, 47/6, and so forth. Then a(n) equals n!*A(n, n) for all n. - John M. Campbell, Jan 20 2019

Examples

			n=2: HilbertMatrix[n,n]
  1 1/2
  1/2 1/3
so a(2) = (2*2-1)! / 2! * (1 + 1/2 + 1/2 + 1/3) = 7.
The n X n Hilbert matrix begins:
  1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 ...
  1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 ...
  1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10 ...
  1/4 1/5 1/6 1/7 1/8 1/9 1/10 1/11 ...
  1/5 1/6 1/7 1/8 1/9 1/10 1/11 1/12 ...
  1/6 1/7 1/8 1/9 1/10 1/11 1/12 1/13 ...
G.f. = x + 7*x^2 + 74*x^3 + 1066*x^4 + 19524*x^5 + 434568*x^6 + ...
		

Crossrefs

Programs

  • Maple
    A098118 := n -> n!*coeff(series(ln(x+1)*add(binomial(2*n,j)*x^j, j=0..n), x, n+1), x, n): seq(A098118(n),n=1..17); # Peter Luschny, Jan 18 2015
    A098118 := n -> hypergeom([1,1,1-n],[2,n+2],1)*n*(2*n)!/(n+1)!:
    seq(simplify(A098118(n)), n=1..17); # Peter Luschny, Jun 11 2016
    A098118 := n -> sum(abs(Stirling1(n,k))*k*(n+1)^(k-1), k=1..n):
    seq(A098118(n), n=1..17); # Ondrej Kutal, Oct 20 2021
  • Mathematica
    Table[(2n - 1)!/n! Sum[ 1/(i + j - 1), {i, n}, {j, n}], {n, 17}]
    a[ n_] := If[ n < 1, 0, (2 n)! / n! Sum[ -(-1)^k / k, {k, 2 n}]]; (* Michael Somos, Dec 09 2013 *)
    a[ n_] := If[ n < 1, 0, (2 n - 1)! / n! Sum[ 1 / (i + j - 1), {i, n}, {j, n}]]; (* Michael Somos, Apr 14 2015 *)
    a[ n_] := If[ n < 1, 0, n! SeriesCoefficient[ (Log[ EllipticNomeQ[ m] / (m/16)]) EllipticK[ m] 16^n / (Binomial[2 n, n] 2 Pi), {m, 0, n}]]; (* Michael Somos, Apr 14 2015 *)
    a[ n_] := If[ n < 1, 0, (2 n + 1)! / n! SeriesCoefficient[ PolyLog[2, -1] + PolyLog[2, (1 - x)/2] + Log[(1 + x)/2] Log[(1 - x)/2]/2 + Log[(1 + x)/(1 - x)] Log[2]/2, {x, 0, 2 n + 1}]]; (* Michael Somos, Apr 14 2015 *)
  • PARI
    {a(n) = if( n<1, 0, (2*n)! / n! * sum( k=1, 2*n, -(-1)^k / k))}; /* Michael Somos, Dec 09 2013 */

Formula

a(n) = ((2*n-1)!/n!)*Sum_{i=1..n} Sum_{j=1..n} 1/(i+j-1).
a(n) = 2*(2*n-1)!/(n-1)!*H'(2*n), where H'(2*n) = H(2*n) - H(n), H'(n) = Sum_{k=1..n} (1/k)*(-1)^(k+1) is an alternate signs Harmonic number, H(n) = Sum_{k=1..n} 1/k is a Harmonic number, H(n) = A001008/A002805. - Alexander Adamchuk, Oct 25 2004
Sum_{k>0} a(k) * k! * x^(2*k + 1) / (2*k + 1)! = F(-1) + F((1 - x)/2) + log(2) * log((1 + x) / (1 - x)) / 2 + log((1 + x) / 2) * log((1 - x) / 2) / 2 where F(x) = Li_2(x) is the dilogarithm function. - Michael Somos, Dec 09 2013
2 * A078791(n) = a(n) * A000984(n). - Michael Somos, Apr 14 2015
a(n) = (2*n)!/n! * Sum_{k = 1..n} 1/(n + k). Column 1 of A257635. - Peter Bala, Nov 05 2015
E.g.f.: (log((sqrt(1-4*x)+1)/2)*(-3*x+sqrt(1-4*x)*(x-1)+1))/(4*x^2+sqrt(1-4*x)*(3*x-1)-5*x+1). - Vladimir Kruchinin, Jun 04 2016
a(n) = hypergeom([1,1,1-n], [2,n+2], 1)*n*(2*n)!/(n+1)!. - Peter Luschny, Jun 11 2016
a(n) ~ log(2) * 2^(2*n + 1/2) * n^n / exp(n). - Vaclav Kotesovec, Jul 10 2016
a(n) = Sum_{k=1..n} |s(n,k)|*k*(n+1)^(k-1) where s(n,k) are Stirling numbers of the first kind (A008275). - Ondrej Kutal, Oct 20 2021
a(n) = n! * [x^n] (-log(1 - x)/(1 - x)^(n+1)). - Seiichi Manyama, May 20 2025

Extensions

New name from Peter Luschny, Jan 19 2015

A082687 Numerator of Sum_{k=1..n} 1/(n+k).

Original entry on oeis.org

1, 7, 37, 533, 1627, 18107, 237371, 95549, 1632341, 155685007, 156188887, 3602044091, 18051406831, 7751493599, 225175759291, 13981692518567, 14000078506967, 98115155543129, 3634060848592973, 3637485804655193
Offset: 1

Views

Author

Benoit Cloitre, Apr 12 2003

Keywords

Comments

Numerator of Sum_{k=0..n-1} 1/((k+1)(2k+1)) (denominator is A111876). - Paul Barry, Aug 19 2005
Numerator of the sum of all matrix elements of n X n Hilbert matrix M(i,j) = 1/(i+j-1) (i,j = 1..n). - Alexander Adamchuk, Apr 11 2006
Numerator of the 2n-th alternating harmonic number H'(2n) = Sum ((-1)^(k+1)/k, k=1..2n). H'(2n) = H(2n) - H(n), where H(n) = Sum_{k=1..n} 1/k is the n-th Harmonic Number. - Alexander Adamchuk, Apr 11 2006
a(n) almost always equals A117731(n) = numerator(n*Sum_{k=1..n} 1/(n+k)) = numerator(Sum_{j=1..n} Sum_{i=1..n} 1/(i+j-1)) but differs for n = 14, 53, 98, 105, 111, 114, 119, 164. - Alexander Adamchuk, Jul 16 2006
Sum_{k=1..n} 1/(n+k) = n!^2 *Sum_{j=1..n} (-1)^(j+1) /((n+j)!(n-j)!j). - Leroy Quet, May 20 2007
Seems to be the denominator of the harmonic mean of the first n hexagonal numbers. - Colin Barker, Nov 19 2014
Numerator of 2*n*binomial(2*n,n)*Sum_{k = 0..n-1} (-1)^k* binomial(n-1,k)/(n+k+1)^2. Cf. A049281. - Peter Bala, Feb 21 2017
From Peter Bala, Feb 16 2022: (Start)
2*Sum_{k = 1..n} 1/(n+k) = 1 + 1/(1*2)*(n-1)/(n+1) - 1/(2*3)*(n-1)*(n-2)/((n+1)*(n+2)) + 1/(3*4)*(n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)) - 1/(4*5)*(n-1)*(n-2)*(n-3)*(n-4)/((n+1)*(n+2)*(n+3)*(n+4)) + - .... Cf. A101028.
2*Sum_{k = 1..n} 1/(n+k) = n - (1 + 1/2^2)*n*(n-1)/(n+1) + (1/2^2 + 1/3^2)*n*(n-1)*(n-2)/((n+1)*(n+2)) - (1/3^2 + 1/4^2)*n*(n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)) + (1/4^2 + 1/5^2)*n*(n-1)*(n-2)*(n-3)*(n-4)/((n+1)*(n+2)*(n+3)*(n+4)) - + .... Cf. A007406 and A120778.
These identities allow us to extend the definition of Sum_{k = 1..n} 1/(n+k) to non-integral values of n. (End)

Examples

			H'(2n) = H(2n) - H(n) = {1/2, 7/12, 37/60, 533/840, 1627/2520, 18107/27720, 237371/360360, 95549/144144, 1632341/2450448, 155685007/232792560, ...}, where H(n) = A001008/A002805.
n=2: HilbertMatrix(n,n)
   1  1/2
  1/2 1/3
so a(2) = Numerator(1 + 1/2 + 1/2 + 1/3) = Numerator(7/3) = 7.
The n X n Hilbert matrix begins:
   1   1/2  1/3  1/4  1/5  1/6  1/7  1/8  ...
  1/2  1/3  1/4  1/5  1/6  1/7  1/8  1/9  ...
  1/3  1/4  1/5  1/6  1/7  1/8  1/9  1/10 ...
  1/4  1/5  1/6  1/7  1/8  1/9  1/10 1/11 ...
  1/5  1/6  1/7  1/8  1/9  1/10 1/11 1/12 ...
  1/6  1/7  1/8  1/9  1/10 1/11 1/12 1/13 ...
		

Crossrefs

Bisection of A058313, A082688 (denominators).

Programs

  • Magma
    [Numerator((HarmonicNumber(2*n) -HarmonicNumber(n))): n in [1..40]]; // G. C. Greubel, Jul 24 2023
    
  • Maple
    a := n -> numer(harmonic(2*n) - harmonic(n)):
    seq(a(n), n=1..20); # Peter Luschny, Nov 02 2017
  • Mathematica
    Numerator[Sum[1/k,{k,1,2*n}] - Sum[1/k,{k,1,n}]] (* Alexander Adamchuk, Apr 11 2006 *)
    Table[Numerator[Sum[1/(i + j - 1), {i, n}, {j, n}]], {n, 20}] (* Alexander Adamchuk, Apr 11 2006 *)
    Table[HarmonicNumber[2 n] - HarmonicNumber[n], {n, 20}] // Numerator (* Eric W. Weisstein, Dec 14 2017 *)
  • PARI
    a(n) = numerator(sum(k=1, n, 1/(n+k))); \\ Michel Marcus, Dec 14 2017
    
  • SageMath
    [numerator(harmonic_number(2*n,1) - harmonic_number(n,1)) for n in range(1,41)] # G. C. Greubel, Jul 24 2023

Formula

Limit_{n -> oo} Sum_{k=1..n} 1/(n+k) = log(2).
Numerator of Psi(2*n+1) - Psi(n+1). - Vladeta Jovovic, Aug 24 2003
a(n) = numerator((Sum_{k=1..2*n} 1/k) - Sum_{k=1..n} 1/k). - Alexander Adamchuk, Apr 11 2006
a(n) = numerator(Sum_{j=1..n} (Sum_{i=1..n} 1/(i+j-1))). - Alexander Adamchuk, Apr 11 2006
The o.g.f for Sum_{k=1..n} 1/(n+k) is f(x) = (sqrt(x)*log((1+sqrt(x))/(1-sqrt(x))) + log(1-x))/(2*x*(1-x)).

A000515 a(n) = (2n)!(2n+1)!/n!^4, or equally (2n+1)*binomial(2n,n)^2.

Original entry on oeis.org

1, 12, 180, 2800, 44100, 698544, 11099088, 176679360, 2815827300, 44914183600, 716830370256, 11445589052352, 182811491808400, 2920656969720000, 46670906271240000, 745904795339462400, 11922821963004219300, 190600129650794094000, 3047248986392325330000
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the (n,n)-th entry in the inverse of the n-th Hilbert matrix. - Asher Auel, May 20 2001
a(n) is also the ratio of the determinants of the n-th Hilbert matrix to the (n+1)-th Hilbert matrix (see A005249), for n>0. Thus the determinant of the inverse of the n-th Hilbert matrix is the product of a(i) for i from 1 to n. (Claimed by Jud McCranie without proof, Jul 17 2000)
a(n) is the right side of the binomial sum: 2^(4*n) * Sum_{i=0..n} binomial(-1/2, i)*binomial(1/2, i). - Yong Kong (ykong(AT)curagen.com), Dec 26 2000
Right-hand side of Sum_{i=0..n} Sum_{j=0..n} binomial(i+j,j)^2 * binomial(4n-2i-2j,2n-2j).

References

  • E. R. Hansen, A Table of Series and Products, Prentice-Hall, Englewood Cliffs, NJ, 1975, p. 96.
  • A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [(2*n+1)*Binomial(2*n,n)^2: n in [0..25]]; // Vincenzo Librandi, Oct 08 2015
    
  • Maple
    with(linalg): for n from 1 to 24 do print(det(hilbert(n))/det(hilbert(n+1))): od;
  • Mathematica
    A000515[n_] := (2*n + 1)*Binomial[2 n, n]^2 (* Enrique Pérez Herrero, Mar 31 2010 *)
    Table[(2 n + 1) (n + 1)^2 CatalanNumber[n]^2, {n, 0, 18}] (* Jan Mangaldan, Sep 23 2021 *)
  • PARI
    vector(100, n, n--; (2*n+1)*binomial(2*n,n)^2) \\ Altug Alkan, Oct 08 2015

Formula

a(n) ~ 2*Pi^-1*2^(4*n). - Joe Keane (jgk(AT)jgk.org), Jun 07 2002
O.g.f.: (2/Pi)*EllipticE(4*sqrt(x))/(1-16*x). - Vladeta Jovovic, Jun 15 2005
E.g.f.: Sum_{n>=0} a(n)*x^(2n)/(2n)! = BesselI(0, 2*x)*(BesselI(0, 2*x) + 4*x*BesselI(1, 2*x)). - Vladeta Jovovic, Jun 15 2005
E.g.f.: Sum_{n>=0} a(n)*x^(2n+1)/(2n+1)! = BesselI(0, 2x)^2*x. - Michael Somos, Jun 22 2005
E.g.f.: x*(BesselI(0, 2*x))^2 = x+(2*x^3)/(U(0)-2*x^2); U(k) = (2*x^2)*(2*k+1) + (k+1)^3 - (2*x^2)*(2*k+3)*((k+1)^3)/U(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 23 2011
n^2*a(n) - 4*(2*n-1)*(2*n+1)*a(n-1) = 0. - R. J. Mathar, Sep 08 2013
O.g.f.: hypergeom([1/2, 3/2], [1], 16*x). - Peter Luschny, Oct 08 2015

A067689 Inverse of determinant of n X n matrix whose (i,j)-th element is 1/(i+j).

Original entry on oeis.org

1, 2, 72, 43200, 423360000, 67212633600000, 172153600393420800000, 7097063852481244869427200000, 4702142622508202833251304734720000000, 50019370356486058711268515056654483456000000000, 8537000898240926708833515201784986712482596782080000000000
Offset: 0

Views

Author

Robert G. Wilson v, Feb 04 2002

Keywords

Examples

			The matrix begins:
1/2 1/3 1/4 1/5 1/6 1/7 1/8 ...
1/3 1/4 1/5 1/6 1/7 1/8 1/9 ...
1/4 1/5 1/6 1/7 1/8 1/9 1/10 ...
1/5 1/6 1/7 1/8 1/9 1/10 1/11 ...
1/6 1/7 1/8 1/9 1/10 1/11 1/12 ...
1/7 1/8 1/9 1/10 1/11 1/12 1/13 ...
		

References

  • Jerry Glynn and Theodore Gray, "The Beginner's Guide to Mathematica Version 4," Cambridge University Press, Cambridge UK, 2000, page 76.
  • G. Pólya and G. Szegő, Aufgaben und Lehrsätze aus der Analysis II, Vierte Auflage, Heidelberger Taschenbücher, Springer, 1971, p. 98, 3. and p. 299, 3.

Crossrefs

Cf. A000984, A060739. See A005249 for a formula.

Programs

  • Maple
    a:= n-> 1/LinearAlgebra[Determinant](Matrix(n, (i,j)-> 1/(i+j))):
    seq(a(n), n=0..11);  # Alois P. Heinz, Nov 24 2023
  • Mathematica
    Table[ 1 / Det[ Table[ 1 / (i + j), {i, 1, n}, {j, 1, n} ]], {n, 1, 10} ]
    a[n_] := Product[ k!/Quotient[k, 2]!^2, {k, 0, 2*n}]; Table[a[n], {n, 1, 9}] (* Jean-François Alcover, Oct 17 2013, after Peter Luschny *)
  • PARI
    a(n)=prod(k=0, n-1, (2*k)!*(2*k+1)!/k!^4)*binomial(2*n,n) \\ Charles R Greathouse IV, Feb 07 2017
  • Sage
    def A067689(n):
        swing = lambda n: factorial(n)/factorial(n//2)^2
        return mul(swing(i) for i in (0..2*n))
    [A067689(i) for i in (1..9)] # Peter Luschny, Sep 18 2012
    

Formula

Equals A005249 * A000984. - Sharon Sela (sharonsela(AT)hotmail.com), Apr 18 2002
a(n) = A163085(2*n). - Peter Luschny, Sep 18 2012
a(n) ~ A^3 * 2^(2*n^2 + n - 1/12) / (exp(1/4) * n^(1/4) * Pi^(n+1/2)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, May 01 2015
a(n) = Prod_{i=1..n}(Prod_{j=1..n} (i+j)) / Prod_{i=1..n}(Prod_{j=1..n-1} (i-j)^2), n >= 1. See the Pólya and Szegő reference (special case) with the original Cauchy reference. - Wolfdieter Lang, Apr 25 2016

Extensions

a(0)=1 prepended by Alois P. Heinz, Nov 24 2023

A278847 a(n) = permanent M_n where M_n is the n X n matrix m(i,j) = i^2 + j^2.

Original entry on oeis.org

1, 2, 41, 3176, 620964, 246796680, 174252885732, 199381727959680, 345875291854507584, 864860593764292790400, 2996169331694350840741440, 13929521390709644084719495680, 84659009841182126038701730464000, 658043094413184868424932006273344000
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 29 2016

Keywords

Comments

From Zhi-Wei Sun, Aug 19 2021: (Start)
I have proved that a(n) == (-1)^(n-1)*2*n! (mod 2n+1) whenever 2n+1 is prime.
Conjecture 1: If 2n+1 is composite, then a(n) == 0 (mod 2n+1).
Conjecture 2: If p = 4n+1 is prime, then the sum of those Product_{j=1..2n}(j^2-f(j)^2)^{-1} with f over all the derangements of {1,...,2n} is congruent to 1/(n!)^2 modulo p. (End)

Crossrefs

Programs

  • Maple
    with(LinearAlgebra):
    a:= n-> `if`(n=0, 1, Permanent(Matrix(n, (i, j)-> i^2+j^2))):
    seq(a(n), n=0..16);  # after Alois P. Heinz
  • Mathematica
    Flatten[{1, Table[Permanent[Table[i^2+j^2, {i, 1, n}, {j, 1, n}]], {n, 1, 15}]}]
  • PARI
    a(n)={matpermanent(matrix(n, n, i, j, i^2 + j^2))} \\ Andrew Howroyd, Aug 21 2018

Formula

a(n) ~ c * d^n * (n!)^3 / n, where d = 3.809076776112918119... and c = 1.07739642254738...

A117731 Numerator of the fraction n*Sum_{k=1..n} 1/(n+k).

Original entry on oeis.org

1, 7, 37, 533, 1627, 18107, 237371, 95549, 1632341, 155685007, 156188887, 3602044091, 18051406831, 54260455193, 225175759291, 13981692518567, 14000078506967, 98115155543129, 3634060848592973, 3637485804655193
Offset: 1

Views

Author

Alexander Adamchuk, Apr 14 2006

Keywords

Comments

a(n) almost always equals A082687(n), but differs for n in A125740.
p divides a((p-1)/3) for primes p in A002476, that is, primes of form 6*n + 1. - Alexander Adamchuk, Jul 16 2006

Examples

			The first few fractions are 1/2, 7/6, 37/20, 533/210, 1627/504, 18107/4620, 237371/51480, ... = A117731/A296519.
For n=2, the n X n Hilbert matrix is
  1 1/2
  1/2 1/3
Thus, a(2) = numerator(1 + 1/2 + 1/2 + 1/3) = numerator(7/3) = 7.
The n X n Hilbert matrix begins as follows:
    1 1/2 1/3 1/4  1/5  1/6  1/7  1/8 ...
  1/2 1/3 1/4 1/5  1/6  1/7  1/8  1/9 ...
  1/3 1/4 1/5 1/6  1/7  1/8  1/9 1/10 ...
  1/4 1/5 1/6 1/7  1/8  1/9 1/10 1/11 ...
  1/5 1/6 1/7 1/8  1/9 1/10 1/11 1/12 ...
  1/6 1/7 1/8 1/9 1/10 1/11 1/12 1/13 ...
  ...
		

Crossrefs

Programs

  • Magma
    [Numerator(n*(HarmonicNumber(2*n) -HarmonicNumber(n))): n in [1..40]]; // G. C. Greubel, Jul 24 2023
    
  • Mathematica
    Numerator[Table[n Sum[1/(n + k), {k, n}], {n, 1, 100}]]
    Numerator[Table[Sum[Sum[1/(i + j - 1), {i, n}], {j, n}], {n, 30}]] (* Alexander Adamchuk, Apr 23 2006 *)
    Table[n (HarmonicNumber[2 n] - HarmonicNumber[n]), {n, 20}] // Numerator (* Eric W. Weisstein, Dec 14 2017 *)
  • PARI
    a(n) = numerator(n*sum(k=1, n, 1/(n+k))); \\ Michel Marcus, Dec 14 2017
    
  • SageMath
    [numerator(n*(harmonic_number(2*n,1) - harmonic_number(n,1))) for n in range(1,41)] # G. C. Greubel, Jul 24 2023

Formula

a(n) = numerator(n*Sum_{k=1..n} 1/(n+k)).
a(n) = numerator(n*(Psi(2*n+1) - Psi(n+1))).
a(n) = numerator(n*Sum_{k=1..2*n} (-1)^(k+1)/k).
a(n) = numerator(n*A058313(2*n)/A058312(2*n)).
a(n) = numerator(Sum_{j=1..n} Sum_{i=1..n} 1/(i+j-1)), which is the numerator of the sum of all matrix elements of n X n Hilbert Matrix M(i,j) = 1/(i+j-1), (i,j = 1..n). The denominator is A117664(n). - Alexander Adamchuk, Apr 23 2006

Extensions

Various sections edited by Petros Hadjicostas and Michel Marcus, May 07 2020

A163085 Product of first n swinging factorials (A056040).

Original entry on oeis.org

1, 1, 2, 12, 72, 2160, 43200, 6048000, 423360000, 266716800000, 67212633600000, 186313420339200000, 172153600393420800000, 2067909047925770649600000, 7097063852481244869427200000
Offset: 0

Views

Author

Peter Luschny, Jul 21 2009

Keywords

Comments

With the definition of the Hankel transform as given by Luschny (see link) which uniquely determines the original sequence (provided that all determinants are not zero) this is also 1/ the Hankel determinant of 1/(n+1) (assuming (0,0)-based matrices).
a(2*n-1) is 1/determinant of the Hilbert matrix H(n) (A005249).
a(2*n) = A067689(n). - Peter Luschny, Sep 18 2012

Crossrefs

Programs

  • Maple
    a := proc(n) local i; mul(A056040(i),i=0..n) end;
  • Mathematica
    a[0] = 1; a[n_] := a[n] = a[n-1]*n!/Floor[n/2]!^2; Table[a[n], {n, 0, 14}] (* Jean-François Alcover, Jun 26 2013 *)
  • Sage
    def A056040(n):
        swing = lambda n: factorial(n)/factorial(n//2)^2
        return mul(swing(i) for i in (0..n))
    [A056040(i) for i in (0..14)] # Peter Luschny, Sep 18 2012

A278845 a(n) = permanent M_n where M_n is the n X n matrix m(i,j) = (i+j)^2.

Original entry on oeis.org

1, 4, 145, 19016, 6176676, 4038562000, 4664347807268, 8698721212922496, 24535712762777208384, 99585504924929052560640, 559305193643176161735904320, 4211594966980674975033969246720, 41428564066728305721531962537124096, 520897493876353116313789796095643304960
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 29 2016

Keywords

Crossrefs

Programs

  • Maple
    with(LinearAlgebra):
    a:= n-> `if`(n=0, 1, Permanent(Matrix(n, (i, j)-> (i+j)^2))):
    seq(a(n), n=0..16);  # Vaclav Kotesovec, Nov 29 2016, after Alois P. Heinz
  • Mathematica
    Flatten[{1, Table[Permanent[Table[(i+j)^2, {i, 1, n}, {j, 1, n}]], {n, 1, 15}]}]
  • PARI
    {a(n) = matpermanent(matrix(n, n, i, j, (i+j)^2))}
    for(n=0, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Aug 09 2021

Formula

a(n) ~ c * d^n * (n!)^3 / n, where d = 6.14071825... and c = 1.79385445... - Vaclav Kotesovec, Aug 12 2021

A107254 a(n) = SF(2n-1)/SF(n-1)^2 where SF = A000178.

Original entry on oeis.org

1, 1, 12, 8640, 870912000, 22122558259200000, 222531556847250309120000000, 1280394777025250130271722799104000000000, 5746332926632566442385615219551212618645504000000000000
Offset: 0

Views

Author

Henry Bottomley, May 14 2005

Keywords

Comments

Inverse product of all matrix elements of n X n Hilbert matrix M(i,j) = 1/(i+j-1) (i,j = 1..n). - Alexander Adamchuk, Apr 12 2006
The n X n matrix with A(i,j) = 1/(i+j-1)! (i,j = 1..n) has determinant (-1)^floor(n/2)/a(n). - Mikhail Lavrov, Nov 01 2022

Examples

			a(3) = 1!*2!*3!*4!*5!/(1!*2!*1!*2!) = 34560/4 = 8640.
n = 2: HilbertMatrix[n,n]
  1/1 1/2
  1/2 1/3
so a(2) = 1 / (1 * 1/2 * 1/2 * 1/3) = 12.
The n X n Hilbert matrix begins:
  1/1 1/2 1/3 1/4  1/5  1/6  1/7  1/8 ...
  1/2 1/3 1/4 1/5  1/6  1/7  1/8  1/9 ...
  1/3 1/4 1/5 1/6  1/7  1/8  1/9 1/10 ...
  1/4 1/5 1/6 1/7  1/8  1/9 1/10 1/11 ...
  1/5 1/6 1/7 1/8  1/9 1/10 1/11 1/12 ...
  1/6 1/7 1/8 1/9 1/10 1/11 1/12 1/13 ...
		

Crossrefs

Programs

  • Magma
    A107254:= func< n | n eq 0 select 1 else (&*[Factorial(n+j)/Factorial(j): j in [0..n-1]]) >;
    [A107254(n): n in [0..12]]; // G. C. Greubel, Apr 21 2021
  • Maple
    a:= n-> mul((n+i)!/i!, i=0..n-1):
    seq(a(n), n=0..10);  # Alois P. Heinz, Jul 23 2012
  • Mathematica
    Table[Product[(i+j-1),{i,1,n},{j,1,n}], {n,1,10}] (* Alexander Adamchuk, Apr 12 2006 *)
    Table[n!*BarnesG[2n+1]/(BarnesG[n+2]*BarnesG[n+1]), {n,0,12}] (* G. C. Greubel, Apr 21 2021 *)
  • Sage
    a = lambda n: prod(rising_factorial(k,n) for k in (1..n))
    print([a(n) for n in (0..10)]) # Peter Luschny, Nov 29 2015
    

Formula

a(n) = n!*(n+1)!*(n+2)!*...*(2n-1)!/(0!*1!*2!*3!*...*(n-1)!) = A000178(2n-1)/A000178(n-1)^2 = A079478(n)/A000984(n) = A079478(n-1)*A009445(n-1) = A107252(n)*A000142(n) = A088020(n)/A039622(n).
a(n) = 1/Product_{j=1..n} ( Product_{i=1..n} 1/(i+j-1) ). - Alexander Adamchuk, Apr 12 2006
a(n) = 2^(n*(n-1)) * A136411(n) for n > 0 . - Robert Coquereaux, Apr 06 2013
a(n) = A136411(n) * A053763(n) for n > 0. [Following remark from Robert Coquereaux] - M. F. Hasler, Apr 06 2013
a(n) ~ A * 2^(2*n^2-1/12) * n^(n^2+1/12) / exp(3*n^2/2+1/12), where A = 1.28242712910062263687534256886979... is the Glaisher-Kinkelin constant (see A074962). - Vaclav Kotesovec, Feb 10 2015
a(n) = Product_{k=1..n} rf(k,n) where rf denotes the rising factorial. - Peter Luschny, Nov 29 2015
a(n) = (n! * G(2*n+1))/(G(n+1)*G(n+2)), where G(n) is the Barnes G - function. - G. C. Greubel, Apr 21 2021
Showing 1-10 of 36 results. Next