cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A082687 Numerator of Sum_{k=1..n} 1/(n+k).

Original entry on oeis.org

1, 7, 37, 533, 1627, 18107, 237371, 95549, 1632341, 155685007, 156188887, 3602044091, 18051406831, 7751493599, 225175759291, 13981692518567, 14000078506967, 98115155543129, 3634060848592973, 3637485804655193
Offset: 1

Views

Author

Benoit Cloitre, Apr 12 2003

Keywords

Comments

Numerator of Sum_{k=0..n-1} 1/((k+1)(2k+1)) (denominator is A111876). - Paul Barry, Aug 19 2005
Numerator of the sum of all matrix elements of n X n Hilbert matrix M(i,j) = 1/(i+j-1) (i,j = 1..n). - Alexander Adamchuk, Apr 11 2006
Numerator of the 2n-th alternating harmonic number H'(2n) = Sum ((-1)^(k+1)/k, k=1..2n). H'(2n) = H(2n) - H(n), where H(n) = Sum_{k=1..n} 1/k is the n-th Harmonic Number. - Alexander Adamchuk, Apr 11 2006
a(n) almost always equals A117731(n) = numerator(n*Sum_{k=1..n} 1/(n+k)) = numerator(Sum_{j=1..n} Sum_{i=1..n} 1/(i+j-1)) but differs for n = 14, 53, 98, 105, 111, 114, 119, 164. - Alexander Adamchuk, Jul 16 2006
Sum_{k=1..n} 1/(n+k) = n!^2 *Sum_{j=1..n} (-1)^(j+1) /((n+j)!(n-j)!j). - Leroy Quet, May 20 2007
Seems to be the denominator of the harmonic mean of the first n hexagonal numbers. - Colin Barker, Nov 19 2014
Numerator of 2*n*binomial(2*n,n)*Sum_{k = 0..n-1} (-1)^k* binomial(n-1,k)/(n+k+1)^2. Cf. A049281. - Peter Bala, Feb 21 2017
From Peter Bala, Feb 16 2022: (Start)
2*Sum_{k = 1..n} 1/(n+k) = 1 + 1/(1*2)*(n-1)/(n+1) - 1/(2*3)*(n-1)*(n-2)/((n+1)*(n+2)) + 1/(3*4)*(n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)) - 1/(4*5)*(n-1)*(n-2)*(n-3)*(n-4)/((n+1)*(n+2)*(n+3)*(n+4)) + - .... Cf. A101028.
2*Sum_{k = 1..n} 1/(n+k) = n - (1 + 1/2^2)*n*(n-1)/(n+1) + (1/2^2 + 1/3^2)*n*(n-1)*(n-2)/((n+1)*(n+2)) - (1/3^2 + 1/4^2)*n*(n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)) + (1/4^2 + 1/5^2)*n*(n-1)*(n-2)*(n-3)*(n-4)/((n+1)*(n+2)*(n+3)*(n+4)) - + .... Cf. A007406 and A120778.
These identities allow us to extend the definition of Sum_{k = 1..n} 1/(n+k) to non-integral values of n. (End)

Examples

			H'(2n) = H(2n) - H(n) = {1/2, 7/12, 37/60, 533/840, 1627/2520, 18107/27720, 237371/360360, 95549/144144, 1632341/2450448, 155685007/232792560, ...}, where H(n) = A001008/A002805.
n=2: HilbertMatrix(n,n)
   1  1/2
  1/2 1/3
so a(2) = Numerator(1 + 1/2 + 1/2 + 1/3) = Numerator(7/3) = 7.
The n X n Hilbert matrix begins:
   1   1/2  1/3  1/4  1/5  1/6  1/7  1/8  ...
  1/2  1/3  1/4  1/5  1/6  1/7  1/8  1/9  ...
  1/3  1/4  1/5  1/6  1/7  1/8  1/9  1/10 ...
  1/4  1/5  1/6  1/7  1/8  1/9  1/10 1/11 ...
  1/5  1/6  1/7  1/8  1/9  1/10 1/11 1/12 ...
  1/6  1/7  1/8  1/9  1/10 1/11 1/12 1/13 ...
		

Crossrefs

Bisection of A058313, A082688 (denominators).

Programs

  • Magma
    [Numerator((HarmonicNumber(2*n) -HarmonicNumber(n))): n in [1..40]]; // G. C. Greubel, Jul 24 2023
    
  • Maple
    a := n -> numer(harmonic(2*n) - harmonic(n)):
    seq(a(n), n=1..20); # Peter Luschny, Nov 02 2017
  • Mathematica
    Numerator[Sum[1/k,{k,1,2*n}] - Sum[1/k,{k,1,n}]] (* Alexander Adamchuk, Apr 11 2006 *)
    Table[Numerator[Sum[1/(i + j - 1), {i, n}, {j, n}]], {n, 20}] (* Alexander Adamchuk, Apr 11 2006 *)
    Table[HarmonicNumber[2 n] - HarmonicNumber[n], {n, 20}] // Numerator (* Eric W. Weisstein, Dec 14 2017 *)
  • PARI
    a(n) = numerator(sum(k=1, n, 1/(n+k))); \\ Michel Marcus, Dec 14 2017
    
  • SageMath
    [numerator(harmonic_number(2*n,1) - harmonic_number(n,1)) for n in range(1,41)] # G. C. Greubel, Jul 24 2023

Formula

Limit_{n -> oo} Sum_{k=1..n} 1/(n+k) = log(2).
Numerator of Psi(2*n+1) - Psi(n+1). - Vladeta Jovovic, Aug 24 2003
a(n) = numerator((Sum_{k=1..2*n} 1/k) - Sum_{k=1..n} 1/k). - Alexander Adamchuk, Apr 11 2006
a(n) = numerator(Sum_{j=1..n} (Sum_{i=1..n} 1/(i+j-1))). - Alexander Adamchuk, Apr 11 2006
The o.g.f for Sum_{k=1..n} 1/(n+k) is f(x) = (sqrt(x)*log((1+sqrt(x))/(1-sqrt(x))) + log(1-x))/(2*x*(1-x)).

A117731 Numerator of the fraction n*Sum_{k=1..n} 1/(n+k).

Original entry on oeis.org

1, 7, 37, 533, 1627, 18107, 237371, 95549, 1632341, 155685007, 156188887, 3602044091, 18051406831, 54260455193, 225175759291, 13981692518567, 14000078506967, 98115155543129, 3634060848592973, 3637485804655193
Offset: 1

Views

Author

Alexander Adamchuk, Apr 14 2006

Keywords

Comments

a(n) almost always equals A082687(n), but differs for n in A125740.
p divides a((p-1)/3) for primes p in A002476, that is, primes of form 6*n + 1. - Alexander Adamchuk, Jul 16 2006

Examples

			The first few fractions are 1/2, 7/6, 37/20, 533/210, 1627/504, 18107/4620, 237371/51480, ... = A117731/A296519.
For n=2, the n X n Hilbert matrix is
  1 1/2
  1/2 1/3
Thus, a(2) = numerator(1 + 1/2 + 1/2 + 1/3) = numerator(7/3) = 7.
The n X n Hilbert matrix begins as follows:
    1 1/2 1/3 1/4  1/5  1/6  1/7  1/8 ...
  1/2 1/3 1/4 1/5  1/6  1/7  1/8  1/9 ...
  1/3 1/4 1/5 1/6  1/7  1/8  1/9 1/10 ...
  1/4 1/5 1/6 1/7  1/8  1/9 1/10 1/11 ...
  1/5 1/6 1/7 1/8  1/9 1/10 1/11 1/12 ...
  1/6 1/7 1/8 1/9 1/10 1/11 1/12 1/13 ...
  ...
		

Crossrefs

Programs

  • Magma
    [Numerator(n*(HarmonicNumber(2*n) -HarmonicNumber(n))): n in [1..40]]; // G. C. Greubel, Jul 24 2023
    
  • Mathematica
    Numerator[Table[n Sum[1/(n + k), {k, n}], {n, 1, 100}]]
    Numerator[Table[Sum[Sum[1/(i + j - 1), {i, n}], {j, n}], {n, 30}]] (* Alexander Adamchuk, Apr 23 2006 *)
    Table[n (HarmonicNumber[2 n] - HarmonicNumber[n]), {n, 20}] // Numerator (* Eric W. Weisstein, Dec 14 2017 *)
  • PARI
    a(n) = numerator(n*sum(k=1, n, 1/(n+k))); \\ Michel Marcus, Dec 14 2017
    
  • SageMath
    [numerator(n*(harmonic_number(2*n,1) - harmonic_number(n,1))) for n in range(1,41)] # G. C. Greubel, Jul 24 2023

Formula

a(n) = numerator(n*Sum_{k=1..n} 1/(n+k)).
a(n) = numerator(n*(Psi(2*n+1) - Psi(n+1))).
a(n) = numerator(n*Sum_{k=1..2*n} (-1)^(k+1)/k).
a(n) = numerator(n*A058313(2*n)/A058312(2*n)).
a(n) = numerator(Sum_{j=1..n} Sum_{i=1..n} 1/(i+j-1)), which is the numerator of the sum of all matrix elements of n X n Hilbert Matrix M(i,j) = 1/(i+j-1), (i,j = 1..n). The denominator is A117664(n). - Alexander Adamchuk, Apr 23 2006

Extensions

Various sections edited by Petros Hadjicostas and Michel Marcus, May 07 2020

A347987 a(n) = [x^n] (2*n)! * Sum_{k=0..2*n} binomial(x,k).

Original entry on oeis.org

1, 1, 11, -75, 3969, -140595, 7374191, -435638203, 30421321073, -2409092861175, 214562251828275, -21195275581114635, 2301157855016159905, -272330254968023391035, 34894294917147760652775, -4812715265513253499593675, 710922905477027337578759265, -111981455662673544130741177455
Offset: 0

Views

Author

Seiichi Manyama, Sep 23 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(2*n)!/n! * SeriesCoefficient[Log[1+x]^n/(1-x), {x, 0, 2*n}], {n, 0, 20}] (* Vaclav Kotesovec, May 25 2025 *)
  • PARI
    a(n) = (2*n)!*polcoef(sum(k=n, 2*n, binomial(x, k)), n);

Formula

a(n) = A054651(2*n,n) = A190782(2*n,n).
a(n) = [x^(2*n)] ((2*n)!/n!) * (log(1 + x))^n/(1 - x).
a(n) ~ (-1)^n * c * d^n * (n-1)!, where d = 8*w^2/(2*w-1), where w = -LambertW(-1,-exp(-1/2)/2) = 1.7564312086261696769827376166... and c = 0.07543488970038444052522917317552747476381171100725972392415521577... - Vaclav Kotesovec, Sep 27 2021, updated May 27 2025

A086881 a(n) = (2*n)!*Sum[Sum[1/(i+j),{i,1,n}],{j,1,n}].

Original entry on oeis.org

1, 34, 1788, 146256, 17485920, 2894002560, 635331029760, 178910029670400, 62920533840998400, 27042268338763776000, 13950701922125574144000, 8509745665997194493952000, 6059691013778107566981120000
Offset: 1

Views

Author

Alexander Adamchuk, Aug 21 2003

Keywords

Examples

			a(2) = 4!*(1/(1+1)+1/(1+2)+1/(2+1)+1/(2+2)) = 24*(1/2+1/3+1/3+1/4)
		

Crossrefs

Programs

  • Mathematica
    Table[((2*n)!)*Sum[Sum[1/(a+b), {i, 1, n}], {j, 1, n}], {n, 1, 20}]

Formula

a(n) = (2*n)!*((2*n+1)*Psi(2*n+2)-(2*n+2)*Psi(n+2)+1-gamma). limit(a(n)/(2*n)!/n, n=infinity)=2*ln2. - Vladeta Jovovic, Aug 24 2003
Sum of all matrix elements M(i, j) = 1/(i+j) multiplied by (2*n)! (i, j = 1..n) or Sum of all matrix elements M(i, j) = 2*i/(i+j)^2 multiplied by (2*n)! (i, j = 1..n). a(n) = (2*n)!*Sum[Sum[2*i/(i+j)^2, {i, 1, n}], {j, 1, n}] - Alexander Adamchuk, Oct 24 2004
a(n) = (2n)! * ((2n+2)*H(2n+2) - 2(n+1)*H(n+1) - H(2n+1)), where H(n) is HarmonicNumber[n] = Sum[1/i, {i, 1, n}] = A001008(n)/A002805(n). - Alexander Adamchuk, Nov 01 2004

A107254 a(n) = SF(2n-1)/SF(n-1)^2 where SF = A000178.

Original entry on oeis.org

1, 1, 12, 8640, 870912000, 22122558259200000, 222531556847250309120000000, 1280394777025250130271722799104000000000, 5746332926632566442385615219551212618645504000000000000
Offset: 0

Views

Author

Henry Bottomley, May 14 2005

Keywords

Comments

Inverse product of all matrix elements of n X n Hilbert matrix M(i,j) = 1/(i+j-1) (i,j = 1..n). - Alexander Adamchuk, Apr 12 2006
The n X n matrix with A(i,j) = 1/(i+j-1)! (i,j = 1..n) has determinant (-1)^floor(n/2)/a(n). - Mikhail Lavrov, Nov 01 2022

Examples

			a(3) = 1!*2!*3!*4!*5!/(1!*2!*1!*2!) = 34560/4 = 8640.
n = 2: HilbertMatrix[n,n]
  1/1 1/2
  1/2 1/3
so a(2) = 1 / (1 * 1/2 * 1/2 * 1/3) = 12.
The n X n Hilbert matrix begins:
  1/1 1/2 1/3 1/4  1/5  1/6  1/7  1/8 ...
  1/2 1/3 1/4 1/5  1/6  1/7  1/8  1/9 ...
  1/3 1/4 1/5 1/6  1/7  1/8  1/9 1/10 ...
  1/4 1/5 1/6 1/7  1/8  1/9 1/10 1/11 ...
  1/5 1/6 1/7 1/8  1/9 1/10 1/11 1/12 ...
  1/6 1/7 1/8 1/9 1/10 1/11 1/12 1/13 ...
		

Crossrefs

Programs

  • Magma
    A107254:= func< n | n eq 0 select 1 else (&*[Factorial(n+j)/Factorial(j): j in [0..n-1]]) >;
    [A107254(n): n in [0..12]]; // G. C. Greubel, Apr 21 2021
  • Maple
    a:= n-> mul((n+i)!/i!, i=0..n-1):
    seq(a(n), n=0..10);  # Alois P. Heinz, Jul 23 2012
  • Mathematica
    Table[Product[(i+j-1),{i,1,n},{j,1,n}], {n,1,10}] (* Alexander Adamchuk, Apr 12 2006 *)
    Table[n!*BarnesG[2n+1]/(BarnesG[n+2]*BarnesG[n+1]), {n,0,12}] (* G. C. Greubel, Apr 21 2021 *)
  • Sage
    a = lambda n: prod(rising_factorial(k,n) for k in (1..n))
    print([a(n) for n in (0..10)]) # Peter Luschny, Nov 29 2015
    

Formula

a(n) = n!*(n+1)!*(n+2)!*...*(2n-1)!/(0!*1!*2!*3!*...*(n-1)!) = A000178(2n-1)/A000178(n-1)^2 = A079478(n)/A000984(n) = A079478(n-1)*A009445(n-1) = A107252(n)*A000142(n) = A088020(n)/A039622(n).
a(n) = 1/Product_{j=1..n} ( Product_{i=1..n} 1/(i+j-1) ). - Alexander Adamchuk, Apr 12 2006
a(n) = 2^(n*(n-1)) * A136411(n) for n > 0 . - Robert Coquereaux, Apr 06 2013
a(n) = A136411(n) * A053763(n) for n > 0. [Following remark from Robert Coquereaux] - M. F. Hasler, Apr 06 2013
a(n) ~ A * 2^(2*n^2-1/12) * n^(n^2+1/12) / exp(3*n^2/2+1/12), where A = 1.28242712910062263687534256886979... is the Glaisher-Kinkelin constant (see A074962). - Vaclav Kotesovec, Feb 10 2015
a(n) = Product_{k=1..n} rf(k,n) where rf denotes the rising factorial. - Peter Luschny, Nov 29 2015
a(n) = (n! * G(2*n+1))/(G(n+1)*G(n+2)), where G(n) is the Barnes G - function. - G. C. Greubel, Apr 21 2021

A117664 Denominator of the sum of all elements in the n X n Hilbert matrix M(i,j) = 1/(i+j-1), where i,j = 1..n.

Original entry on oeis.org

1, 3, 10, 105, 252, 2310, 25740, 9009, 136136, 11639628, 10581480, 223092870, 1029659400, 2868336900, 11090902680, 644658718275, 606737617200, 4011209802600, 140603459396400, 133573286426580, 5215718803323600
Offset: 1

Views

Author

Alexander Adamchuk, Apr 11 2006

Keywords

Comments

Sum_{j=1..n} Sum_{i=1..n} 1/(i+j-1) = A117731(n) / A117664(n) = 2n * H'(2n) = 2n * A058313(2n) / A058312(2n), where H'(2n) is 2n-th alternating sign Harmonic Number. H'(2n) = H(2n) - H(n), where H(n) is n-th Harmonic Number. - Alexander Adamchuk, Apr 23 2006

Examples

			For n=2, the 2 X 2 Hilbert matrix is [1, 1/2; 1/2, 1/3], so a(2) = denominator(1 + 1/2 + 1/2 + 1/3) = denominator(7/3) = 3.
The n X n Hilbert matrix begins:
    1 1/2 1/3 1/4  1/5  1/6  1/7  1/8 ...
  1/2 1/3 1/4 1/5  1/6  1/7  1/8  1/9 ...
  1/3 1/4 1/5 1/6  1/7  1/8  1/9 1/10 ...
  1/4 1/5 1/6 1/7  1/8  1/9 1/10 1/11 ...
  1/5 1/6 1/7 1/8  1/9 1/10 1/11 1/12 ...
  1/6 1/7 1/8 1/9 1/10 1/11 1/12 1/13 ...
  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Denominator[Sum[1/(i + j - 1), {i, n}, {j, n}]], {n, 30}]

Formula

a(n) = A111876(n-1)/n.
a(n) = denominator( Sum_{j=1..n} Sum_{i=1..n} 1/(i+j-1) ). Numerator is A117731(n). - Alexander Adamchuk, Apr 23 2006
a(n) = denominator( Sum_{k=1..n} (2*k)/(n+k) ). - Peter Bala, Oct 10 2021

A091342 Given (1) f(h,j,a) = ( [ ((a/gcd(a,h)) / gcd(j+1,(a/gcd(a,h)))) * (h(j+1)) ] - [ ((a/gcd(a,h)) / gcd(j+1,(a/gcd(a,h)))) * (ja) ] ) / a then let (2) a(h) = d(h,j) = lcm( f(h,j,1) ... f(h,j,h) ).

Original entry on oeis.org

1, 3, 10, 105, 252, 2310, 25740, 45045, 680680, 11639628, 10581480, 223092870, 1029659400, 2868336900, 77636318760, 4512611027925, 4247163320400, 4011209802600, 140603459396400, 133573286426580, 5215718803323600
Offset: 1

Views

Author

Scott C. Macfarlan (scottmacfarlan(AT)covance.com), Mar 01 2004

Keywords

Comments

Solves the following arithmetic problem. Let (3) q#(i/j)=(q+h) be defined thus: Given q, an unknown fraction, q=qd/d, of integer value (initially) and h equal to any desired integer value and j equal to any desired integer value and i equal to j(q+h)+h.
Let '#' denote the repeated addition of the denominator j to the denominator of q and the repeated addition of the numerator i to the numerator of q, each addition recursively replacing the prior q fractions numerator and denominator respectively. This results in a series of fractions of mostly non-integer values.
After the first three iterations for any case would result in the following fractions: 1) (qd+i) / (d+j) 2) ((qd+i)+i) / ((d+j)+j) 3) (((qd+i)+i)+i) / (((d+j)+j)+j)
The question is, what is the smallest initial denominator, d (of q=qd/d) that in the course of the repeated additions will result in fractions of integer value, where every integer, from the initial (q+1)...(q+h) will be formed?
For example, let q = 4, h = 5, so (q+h)=9 and j = 1, so that for i we have i = 14. So in terms of q#(i/j)=(q+h) we have 4#(14/1)=9.
In this sample, since h=5 and j=1 we get from (2) above that d(5,1) = 252 as the solution. Applying this solution, we see then that the initial numerator of q, or q*d, becomes 4*252 = 1008 and the initial denominator is 252. Alternatively, in terms of q#(i/j)=(q+h) we have (1008/252)#(14/1)=9. We see that the repeated additions yield:
1) 1008 +14 and 252 +1 ~ 1022/253
2) 1022 +14 and 253 +1 ~ 1036/254
...
27) 1372 +14 and 277 +1 ~ 1386/279
28) 1386 +14 and 278 +1 ~ 1400/280 =5
...
63) 1876 +14 and 314 +1 ~ 1890/315 =6
...
108) 2506 +14 and 359 +1 ~ 2520/360 =7
...
168) 3346 +14 and 419 +1 ~ 3360/420 =8
...
252) 4522 +14 and 503 +1 ~ 4536/504 =9
Note that h=5 and j=1 were chosen so that d(5,1) = a(5) of the sequence. Also note that by the definition of q#(i/j)=(q+h) all answers are only a function of h and j.
Note also that q=qd/d can also be expressed as 0=0d/d and that any q#(i/j)=(q+h) can be expressed as 0#(i/j)=h [after adjustments are made to i]. For instance 4#(14/1)=9 is the equivalent of 0#(10/1)=5 in terms of d(h,j).
Interestingly: For any q#(i/j)=p and r#(s/j)=t then (q+r)#((i+s)/j)=(p+t). Also for any q#(i/j)=p then (qr)#((ir)/j)=(pr).
The sequence A025558 can be calculated from this formula when h = j, in otherwords using the sequence of d(1, 1)...d(n, n). i.e. a(7) = 735 = d(7,7) = lcm(49,21,35,7,21,7,1) a(8) = 2240 = d(8,8) = lcm(64,28,16,10,32,416,1)
Denominator of the sum of all elements of n X n Hilbert Matrix M[i,j] with alternate signs. M[i,j] = 1/(i+j-1)(i,j = 1..n). - Alexander Adamchuk, Apr 11 2006

Examples

			a(5) = lcm(9,4,7,3) = 252
a(7) = lcm(13,6,11,5,9,4,1) = 25740
a(10)= lcm(19,9,17,4,3,7,13,3,11,1) = 11639628
a(14)= lcm(27,13,25,6,23,11,3,5,19,9,17,4,15,1) = 2868336900
n=2: HilbertMatrix[n,n]
1 1/2
1/2 1/3
so a(2) = Denominator[(1 - 1/2 - 1/2 + 1/3)] = Denominator[1/3] = 3.
The n X n Hilbert matrix begins:
1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 ...
1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 ...
1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10 ...
1/4 1/5 1/6 1/7 1/8 1/9 1/10 1/11 ...
1/5 1/6 1/7 1/8 1/9 1/10 1/11 1/12 ...
1/6 1/7 1/8 1/9 1/10 1/11 1/12 1/13 ...
		

Crossrefs

Programs

  • Mathematica
    Denominator[Table[Sum[Sum[(-1)^(i+j)*1/(i+j-1),{i,1,n}],{j,1,n}],{n,1,40}]] (* Alexander Adamchuk, Apr 11 2006 *)

Formula

a(n) = Denominator[Sum[Sum[(-1)^(i+j)*1/(i+j-1),{i,1,n}],{j,1,n}]]. - Alexander Adamchuk, Apr 11 2006

A384137 a(n) = (4*n)!/(3*n)! * Sum_{k=1..n} 1/(3*n+k).

Original entry on oeis.org

1, 15, 362, 12122, 520024, 27216936, 1681732464, 119823343440, 9671547654720, 872215286083200, 86920331742115200, 9485402065890543360, 1124985637517264409600, 144084905450972444851200, 19819350850103541715507200, 2914041773775561429169612800, 456069533875430113486232985600
Offset: 1

Views

Author

Seiichi Manyama, May 20 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, k*(3*n+1)^(k-1)*abs(stirling(n, k, 1)));

Formula

a(n) = Sum_{k=0..n} k * (3*n+1)^(k-1) * |Stirling1(n,k)|.
a(n) = n! * [x^n] (-log(1 - x)/(1 - x)^(3*n+1)).

A078791 Expansion of Auxiliary function L(1-m) / 4 in powers of m / 16.

Original entry on oeis.org

0, 1, 21, 740, 37310, 2460024, 200770416, 19551774528, 2213488134000, 285711909912000, 41419784380740480, 6663725042739448320, 1178209566488368028160, 227096910697908706560000
Offset: 0

Views

Author

Michael Somos, Dec 05 2002

Keywords

Comments

Nome q(m) = x exp(8 * (Sum_{n>0} a(n) * x^n / n!) / (Sum_{n>=0} binomial(2n, n)^2 * x^n)) where x = m / 16.
The Fricke reference on page 2 has equation "(3) Pi i omega = -Pi K'/K = log k^2 - 4 log 2 + F_1(1/2, 1/2; k^2) / F(1/2, 1/2, 1; k^2), wo F_1 und F ..." where F_1 = 8 * Sum_{n>0} a(n) * x^n / n! with x = m / 16 = (k / 4)^2. - Michael Somos, Jul 14 2013

Examples

			G.f. = x + 21*x^2 + 740*x^3 + 37310*x^4 + 2460024*x^5 + 200770416*x^6 + 19551774528*x^7 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 591.
  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 9.

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ Log[ EllipticNomeQ[ 16 x] / x] Hypergeometric2F1[ 1/2, 1/2, 1, 16 x] / 8, {x, 0, n}]]; (* Michael Somos, Jul 14 2013 *)
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ Log[ EllipticNomeQ[ 16 x] / x] EllipticK[ 16 x] / (4 Pi), {x, 0, n}]]; (* Michael Somos, Jul 14 2013 *)
    a[ n_] := If[ n < 0, 0, n! Binomial[ 2 n, n]^2 Sum[ 1/k, {k, n + 1, 2 n}] / 2]; (* Michael Somos, Jul 14 2013 *)
    a[ n_] := If[ n < 0, 0, n! Binomial[ 2 n, n]^2 (HarmonicNumber[2 n] - HarmonicNumber[n]) / 2]; (* Michael Somos, Apr 14 2015 *)
  • PARI
    {a(n) = if( n<0, 0, sum( k=1, n, 1 / (2*k - 1) / k) / 4 * (2*n)!^2 / n!^3)};

Formula

E.g.f.: L(1-m) = log(16 / m) (K(m) / Pi) - K(1-m) = 4 Sum_{n>0} a(n) (m/16)^n / n!.
2 * a(n) = A098118(n) * A000984(n). - Michael Somos, Apr 14 2015
a(n) ~ log(2) * 2^(4*n - 1/2) * n^n / (sqrt(Pi*n) * exp(n)). - Vaclav Kotesovec, Jul 10 2016

A101029 Denominator of partial sums of a certain series.

Original entry on oeis.org

1, 10, 70, 420, 4620, 60060, 60060, 408408, 7759752, 38798760, 892371480, 4461857400, 13385572200, 55454513400, 1719089915400, 3438179830800, 24067258815600, 890488576177200, 890488576177200, 36510031623265200, 1569931359800403600, 1569931359800403600, 73786773910618969200
Offset: 1

Views

Author

Wolfdieter Lang, Dec 17 2004

Keywords

Comments

The numerators are given in A101028.
One third of the denominator of the finite differences of the series of sums of all matrix elements of n X n Hilbert matrix M(i,j)=1/(i+j-1) (i,j = 1..n). - Alexander Adamchuk, Apr 11 2006

Examples

			n=2: HilbertMatrix[n,n]
   1  1/2
  1/2 1/3
so a(1) = (1/3)*denominator((1 + 1/2 + 1/2 + 1/3) - 1) = (1/3)*denominator(4/3) = 1.
The n X n Hilbert matrix begins:
   1  1/2 1/3 1/4 1/5  1/6  1/7  1/8 ...
  1/2 1/3 1/4 1/5 1/6  1/7  1/8  1/9 ...
  1/3 1/4 1/5 1/6 1/7  1/8  1/9  1/10 ...
  1/4 1/5 1/6 1/7 1/8  1/9  1/10 1/11 ...
  1/5 1/6 1/7 1/8 1/9  1/10 1/11 1/12 ...
  1/6 1/7 1/8 1/9 1/10 1/11 1/12 1/13 ...
		

Crossrefs

Cf. A101028 (numerators).

Programs

  • Mathematica
    Denominator[Table[Sum[1/(i + j - 1), {i, n}, {j, n}], {n,2, 27}]-Table[Sum[1/(i + j - 1), {i, n}, {j, n}], {n, 26}]]/3 (* Alexander Adamchuk, Apr 11 2006 *)
  • PARI
    a(n) = denominator(3*sum(k=1, n, 1/((2*k-1)*k*(2*k+1)))); \\ Michel Marcus, Feb 28 2022

Formula

a(n) = denominator(s(n)) with s(n) = 3*Sum_{k=1..n} 1/((2*k-1)*k*(2*k+1)). See A101028 for more information.
a(n) = (1/3)*denominator((Sum_{i=1..n+1} Sum_{j=1..n+1} 1/(i+j-1)) - (Sum_{i=1..n} Sum_{j=1..n} 1/(i+j-1))). a(n) = (1/3)*denominator(H(2*n+1) + H(2*n) - 2*H(n)), where H(n) = Sum_{k=1..n} 1/k is a harmonic number, H(n) = A001008/A002805. - Alexander Adamchuk, Apr 11 2006

Extensions

More terms from Michel Marcus, Feb 28 2022
Showing 1-10 of 16 results. Next