A119030
Difference between numerator and denominator of the sum of all matrix elements of n X n Hilbert matrix M(i,j)=1/(i+j-1) (i,j = 1..n), A117731[n] - A117664[n].
Original entry on oeis.org
0, 4, 27, 428, 1375, 15797, 211631, 86540, 1496205, 144045379, 145607407, 3378951221, 17021747431, 51392118293, 214084856611, 13337033800292, 13393340889767, 94103945740529, 3493457389196573, 3503912518228613
Offset: 1
-
Numerator[Table[Sum[Sum[1/(i+j-1),{i,1,n}],{j,1,n}],{n,1,25}]] - Denominator[Table[Sum[Sum[1/(i+j-1),{i,1,n}],{j,1,n}],{n,1,25}]]
A117731
Numerator of the fraction n*Sum_{k=1..n} 1/(n+k).
Original entry on oeis.org
1, 7, 37, 533, 1627, 18107, 237371, 95549, 1632341, 155685007, 156188887, 3602044091, 18051406831, 54260455193, 225175759291, 13981692518567, 14000078506967, 98115155543129, 3634060848592973, 3637485804655193
Offset: 1
The first few fractions are 1/2, 7/6, 37/20, 533/210, 1627/504, 18107/4620, 237371/51480, ... = A117731/A296519.
For n=2, the n X n Hilbert matrix is
1 1/2
1/2 1/3
Thus, a(2) = numerator(1 + 1/2 + 1/2 + 1/3) = numerator(7/3) = 7.
The n X n Hilbert matrix begins as follows:
1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 ...
1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 ...
1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10 ...
1/4 1/5 1/6 1/7 1/8 1/9 1/10 1/11 ...
1/5 1/6 1/7 1/8 1/9 1/10 1/11 1/12 ...
1/6 1/7 1/8 1/9 1/10 1/11 1/12 1/13 ...
...
-
[Numerator(n*(HarmonicNumber(2*n) -HarmonicNumber(n))): n in [1..40]]; // G. C. Greubel, Jul 24 2023
-
Numerator[Table[n Sum[1/(n + k), {k, n}], {n, 1, 100}]]
Numerator[Table[Sum[Sum[1/(i + j - 1), {i, n}], {j, n}], {n, 30}]] (* Alexander Adamchuk, Apr 23 2006 *)
Table[n (HarmonicNumber[2 n] - HarmonicNumber[n]), {n, 20}] // Numerator (* Eric W. Weisstein, Dec 14 2017 *)
-
a(n) = numerator(n*sum(k=1, n, 1/(n+k))); \\ Michel Marcus, Dec 14 2017
-
[numerator(n*(harmonic_number(2*n,1) - harmonic_number(n,1))) for n in range(1,41)] # G. C. Greubel, Jul 24 2023
A111876
Denominator of Sum_{k = 0..n} 1/((k+1)*(2*k+1)).
Original entry on oeis.org
1, 6, 30, 420, 1260, 13860, 180180, 72072, 1225224, 116396280, 116396280, 2677114440, 13385572200, 5736673800, 166363540200, 10314539492400, 10314539492400, 72201776446800, 2671465728531600, 2671465728531600
Offset: 0
-
[Denominator(HarmonicNumber(2*n+2) -HarmonicNumber(n+1))/2: n in [0..40]]; // G. C. Greubel, Jul 24 2023
-
seq(denom( add(1/((k+1)*(2*k+1)), k = 0..n) ), n = 0..20); # Peter Bala, Oct 10 2021
-
Table[Denominator[HarmonicNumber[2n+2] - HarmonicNumber[n+1]]/2, {n, 0, 30}]
-
a(n) = denominator(sum(k=0, n, 1/((k+1)*(2*k+1)))); \\ Michel Marcus, Oct 10 2021
-
[denominator(harmonic_number(2*n+2,1) - harmonic_number(n+1,1))/2 for n in range(41)] # G. C. Greubel, Jul 24 2023
A296519
Denominator of n*Sum_{k=1..n} 1/(n+k).
Original entry on oeis.org
2, 6, 20, 210, 504, 4620, 51480, 18018, 272272, 23279256, 21162960, 446185740, 2059318800, 5736673800, 22181805360, 1289317436550, 1213475234400, 8022419605200, 281206918792800, 267146572853160, 10431437606647200, 428163098127382800, 409547311252279200
Offset: 1
The first few fractions are 1/2, 7/6, 37/20, 533/210, 1627/504, 18107/4620, 237371/51480, ... = A117731/a(n).
-
[Denominator(n*(HarmonicNumber(2*n) -HarmonicNumber(n))): n in [1..40]]; // G. C. Greubel, Jul 24 2023
-
N:= 30: # for a(1)..a(N)
H:= ListTools:-PartialSums([seq(1/i,i=1..2*N)]):
map(n -> denom(n*(H[2*n]-H[n])), [$1..N]); # Robert Israel, May 21 2020
-
Table[n (HarmonicNumber[2 n] - HarmonicNumber[n]), {n, 30}] // Denominator
-
a(n) = denominator(n*sum(k=1, n, 1/(n+k))); \\ Michel Marcus, Dec 14 2017
-
[denominator(n*(harmonic_number(2*n,1) - harmonic_number(n,1))) for n in range(1,41)] # G. C. Greubel, Jul 24 2023
Showing 1-4 of 4 results.
Comments