cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A125740 Numbers n such that A117731(n) differs from A082687(n).

Original entry on oeis.org

14, 52, 98, 105, 111, 114, 119, 164, 310, 444, 518, 602, 676, 686, 715, 735, 749, 833, 1220, 1278, 1339, 1474, 1752, 1946, 2023, 2054, 2166, 3016, 3104, 3502, 3568, 3924, 4107, 4308, 4802, 5145, 5243, 5334, 5718, 5831, 6394, 6724, 7550, 8135, 8164, 8767
Offset: 1

Views

Author

Alexander Adamchuk, Dec 04 2006, Mar 12 2007

Keywords

Comments

All listed terms are composite.
The ratio of A117731(n) and A082687(n) when they are different is listed in A125741(n) = A117731[ a(n) ] / A082687[ a(n) ] = {7, 13, 7, 7, 37, 19, 119, 41, 31, 37, 37, 43, 13, 7, 13, 49, 7, 7, 61, 71, 103, 67, 73, 139, ...}.
It appears that all (or almost all) members of geometric progressions 2*7^k, 4*13^k, 15*7^k, 3^37^k, 6*19^k, 17*7^k, 4*41^k, 10*31^k, 12*37^k, 55*13^k, 107*7^k, etc. for k>0 are in the sequence.

Examples

			A117731(n) begins {1, 7, 37, 533, 1627, 18107, 237371, 95549, 1632341, 155685007, 156188887, 3602044091, 18051406831, 54260455193, ...}.
A082687(n) begins {1, 7, 37, 533, 1627, 18107, 237371, 95549, 1632341, 155685007, 156188887, 3602044091, 18051406831, 7751493599, ...}.
Thus a(1) = 14 because for n<14 A117731(n) = A082687(n) but A117731(14) = 54260455193 differs from A082687(14) = 7751493599.
		

Crossrefs

Cf. A117731 = Numerator of n*Sum[ 1/(n+k), {k, 1, n} ]. Cf. A082687 = Numerator of Sum[ 1/(n+k), {k, 1, n} ]. Cf. A125741 = The ratio of A117731(n) and A082687(n) when they are different.
Cf. A082687(n) = numerator of the 2n-th alternating harmonic number H'(2n) = Sum ((-1)^(k+1)/k, k=1..2n). H'(2n) = H(2n) - H(n), where H(n) = Sum (1/k, k=1..n) is the n-th harmonic number. A117731(n) = numerator of the sum of all matrix elements of n X n Hilbert matrix M(i, j) = 1/(i+j-1), (i, j=1..n).
Cf. A126196, A126197, A125581 = numbers n such that n does not divide the denominator of the n-th harmonic number nor the denominator of the n-th alternating harmonic number.

Programs

  • Mathematica
    h=0; Do[ h=h+1/(n+1)/(2n+1); f=Numerator[n*h]; g=Numerator[h]; If[ !Equal[f,g], Print[n] ], {n,1,17381} ]

A125741 The ratio of A117731(n) and A082687(n) when they are different.

Original entry on oeis.org

7, 13, 7, 7, 37, 19, 119, 41, 31, 37, 37, 43, 13, 7, 13, 49, 7, 7, 61, 71, 103, 67, 73, 139, 17, 79, 19, 29, 97, 103, 223, 109, 37, 359, 7, 49, 7, 127, 953, 7, 139, 41, 151, 1627, 157, 797, 179, 13, 163, 13, 13, 13, 13, 13, 31, 31, 181, 193, 199, 919, 193, 211, 757, 37
Offset: 1

Views

Author

Alexander Adamchuk, Dec 04 2006

Keywords

Comments

Corresponding numbers n such that A117731(n) differs from A082687(n) are listed in A125740(n) = {14, 52, 98, 105, 111, 114, 119, 164, 310, 444, 518, 602, 676, 686, 715, 735, 749, 833, ...}. a(n) divides A125740(n). Most a(n) are primes.
The first composite term in a(n) is a(7) = 119 = 7*17. a(n) is composite for n = {7, 16, 36}. a(16) = a(36) = 49 = 7^2.

Examples

			A082687(n) begins {1, 7, 37, 533, 1627, 18107, 237371, 95549, 1632341, 155685007, 156188887, 3602044091, 18051406831, 7751493599, ...}.
Thus a(1) = 7 because A117731(n)/A082687(n) = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1,...}.
		

Crossrefs

Cf. A125740 = numbers n such that A117731(n) differs from A082687(n). Cf. A117731 = Numerator of n*Sum[ 1/(n+k), {k, 1, n} ]. Cf. A082687 = Numerator of Sum[ 1/(n+k), {k, 1, n} ].

Programs

  • Mathematica
    h=0; Do[ h=h+1/(n+1)/(2n+1); f=Numerator[n*h]; g=Numerator[h]; If[ !Equal[f,g], Print[ {n,f/g} ] ], {n,1,10000} ]

Formula

a(n) = A117731[ A125740(n) ] / A082687[ A125740(n) ].

A119030 Difference between numerator and denominator of the sum of all matrix elements of n X n Hilbert matrix M(i,j)=1/(i+j-1) (i,j = 1..n), A117731[n] - A117664[n].

Original entry on oeis.org

0, 4, 27, 428, 1375, 15797, 211631, 86540, 1496205, 144045379, 145607407, 3378951221, 17021747431, 51392118293, 214084856611, 13337033800292, 13393340889767, 94103945740529, 3493457389196573, 3503912518228613
Offset: 1

Views

Author

Alexander Adamchuk, Jul 22 2006

Keywords

Comments

p^3 divides a(p^k) for prime p>2 and integer k>0.

Crossrefs

Programs

  • Mathematica
    Numerator[Table[Sum[Sum[1/(i+j-1),{i,1,n}],{j,1,n}],{n,1,25}]] - Denominator[Table[Sum[Sum[1/(i+j-1),{i,1,n}],{j,1,n}],{n,1,25}]]

Formula

a(n) = Numerator[Sum[Sum[1/(i+j-1),{i,1,n}],{j,1,n}]] - Denominator[Sum[Sum[1/(i+j-1),{i,1,n}],{j,1,n}]]. a(n) = A117731[n] - A117664[n].

A126563 Numbers k such that the ratio of A117731(k) and A082687(k) is composite.

Original entry on oeis.org

119, 735, 5145, 36015, 252105, 1764735, 12353145
Offset: 1

Views

Author

Alexander Adamchuk, Mar 12 2007, Jun 09 2007

Keywords

Comments

a(1) = 7*17, a(2) = 3*5*7^2, a(3) = 3*5*7^3.
Corresponding composite terms in A125741 are {119, 49, 49, 49, 49, 49, 49, ...}.
A125741(n) is composite for n = {7, 16, 36, 91, 226, 510, 1131, ...}.

Crossrefs

Programs

  • Mathematica
    h=0; Do[ h=h+1/(n+1)/(2n+1); f=Numerator[n*h]; g=Numerator[h]; If[ !Equal[f, g] && !PrimeQ[f/g], Print[ {n, f/g, FactorInteger[n], FactorInteger[f/g]} ] ], {n, 1, 10000} ]
  • PARI
    f(n) = sum(k=1, n, 1/(n+k));
    isok(k) = my(fk = f(k), q = numerator(k*fk)/numerator(fk)); (q!=1) && !isprime(q); \\ Michel Marcus, Mar 08 2023

Extensions

Edited by Max Alekseyev, Jul 12 2019
a(5)-a(7) from Jinyuan Wang, Jul 10 2025

A082687 Numerator of Sum_{k=1..n} 1/(n+k).

Original entry on oeis.org

1, 7, 37, 533, 1627, 18107, 237371, 95549, 1632341, 155685007, 156188887, 3602044091, 18051406831, 7751493599, 225175759291, 13981692518567, 14000078506967, 98115155543129, 3634060848592973, 3637485804655193
Offset: 1

Views

Author

Benoit Cloitre, Apr 12 2003

Keywords

Comments

Numerator of Sum_{k=0..n-1} 1/((k+1)(2k+1)) (denominator is A111876). - Paul Barry, Aug 19 2005
Numerator of the sum of all matrix elements of n X n Hilbert matrix M(i,j) = 1/(i+j-1) (i,j = 1..n). - Alexander Adamchuk, Apr 11 2006
Numerator of the 2n-th alternating harmonic number H'(2n) = Sum ((-1)^(k+1)/k, k=1..2n). H'(2n) = H(2n) - H(n), where H(n) = Sum_{k=1..n} 1/k is the n-th Harmonic Number. - Alexander Adamchuk, Apr 11 2006
a(n) almost always equals A117731(n) = numerator(n*Sum_{k=1..n} 1/(n+k)) = numerator(Sum_{j=1..n} Sum_{i=1..n} 1/(i+j-1)) but differs for n = 14, 53, 98, 105, 111, 114, 119, 164. - Alexander Adamchuk, Jul 16 2006
Sum_{k=1..n} 1/(n+k) = n!^2 *Sum_{j=1..n} (-1)^(j+1) /((n+j)!(n-j)!j). - Leroy Quet, May 20 2007
Seems to be the denominator of the harmonic mean of the first n hexagonal numbers. - Colin Barker, Nov 19 2014
Numerator of 2*n*binomial(2*n,n)*Sum_{k = 0..n-1} (-1)^k* binomial(n-1,k)/(n+k+1)^2. Cf. A049281. - Peter Bala, Feb 21 2017
From Peter Bala, Feb 16 2022: (Start)
2*Sum_{k = 1..n} 1/(n+k) = 1 + 1/(1*2)*(n-1)/(n+1) - 1/(2*3)*(n-1)*(n-2)/((n+1)*(n+2)) + 1/(3*4)*(n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)) - 1/(4*5)*(n-1)*(n-2)*(n-3)*(n-4)/((n+1)*(n+2)*(n+3)*(n+4)) + - .... Cf. A101028.
2*Sum_{k = 1..n} 1/(n+k) = n - (1 + 1/2^2)*n*(n-1)/(n+1) + (1/2^2 + 1/3^2)*n*(n-1)*(n-2)/((n+1)*(n+2)) - (1/3^2 + 1/4^2)*n*(n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)) + (1/4^2 + 1/5^2)*n*(n-1)*(n-2)*(n-3)*(n-4)/((n+1)*(n+2)*(n+3)*(n+4)) - + .... Cf. A007406 and A120778.
These identities allow us to extend the definition of Sum_{k = 1..n} 1/(n+k) to non-integral values of n. (End)

Examples

			H'(2n) = H(2n) - H(n) = {1/2, 7/12, 37/60, 533/840, 1627/2520, 18107/27720, 237371/360360, 95549/144144, 1632341/2450448, 155685007/232792560, ...}, where H(n) = A001008/A002805.
n=2: HilbertMatrix(n,n)
   1  1/2
  1/2 1/3
so a(2) = Numerator(1 + 1/2 + 1/2 + 1/3) = Numerator(7/3) = 7.
The n X n Hilbert matrix begins:
   1   1/2  1/3  1/4  1/5  1/6  1/7  1/8  ...
  1/2  1/3  1/4  1/5  1/6  1/7  1/8  1/9  ...
  1/3  1/4  1/5  1/6  1/7  1/8  1/9  1/10 ...
  1/4  1/5  1/6  1/7  1/8  1/9  1/10 1/11 ...
  1/5  1/6  1/7  1/8  1/9  1/10 1/11 1/12 ...
  1/6  1/7  1/8  1/9  1/10 1/11 1/12 1/13 ...
		

Crossrefs

Bisection of A058313, A082688 (denominators).

Programs

  • Magma
    [Numerator((HarmonicNumber(2*n) -HarmonicNumber(n))): n in [1..40]]; // G. C. Greubel, Jul 24 2023
    
  • Maple
    a := n -> numer(harmonic(2*n) - harmonic(n)):
    seq(a(n), n=1..20); # Peter Luschny, Nov 02 2017
  • Mathematica
    Numerator[Sum[1/k,{k,1,2*n}] - Sum[1/k,{k,1,n}]] (* Alexander Adamchuk, Apr 11 2006 *)
    Table[Numerator[Sum[1/(i + j - 1), {i, n}, {j, n}]], {n, 20}] (* Alexander Adamchuk, Apr 11 2006 *)
    Table[HarmonicNumber[2 n] - HarmonicNumber[n], {n, 20}] // Numerator (* Eric W. Weisstein, Dec 14 2017 *)
  • PARI
    a(n) = numerator(sum(k=1, n, 1/(n+k))); \\ Michel Marcus, Dec 14 2017
    
  • SageMath
    [numerator(harmonic_number(2*n,1) - harmonic_number(n,1)) for n in range(1,41)] # G. C. Greubel, Jul 24 2023

Formula

Limit_{n -> oo} Sum_{k=1..n} 1/(n+k) = log(2).
Numerator of Psi(2*n+1) - Psi(n+1). - Vladeta Jovovic, Aug 24 2003
a(n) = numerator((Sum_{k=1..2*n} 1/k) - Sum_{k=1..n} 1/k). - Alexander Adamchuk, Apr 11 2006
a(n) = numerator(Sum_{j=1..n} (Sum_{i=1..n} 1/(i+j-1))). - Alexander Adamchuk, Apr 11 2006
The o.g.f for Sum_{k=1..n} 1/(n+k) is f(x) = (sqrt(x)*log((1+sqrt(x))/(1-sqrt(x))) + log(1-x))/(2*x*(1-x)).

A117664 Denominator of the sum of all elements in the n X n Hilbert matrix M(i,j) = 1/(i+j-1), where i,j = 1..n.

Original entry on oeis.org

1, 3, 10, 105, 252, 2310, 25740, 9009, 136136, 11639628, 10581480, 223092870, 1029659400, 2868336900, 11090902680, 644658718275, 606737617200, 4011209802600, 140603459396400, 133573286426580, 5215718803323600
Offset: 1

Views

Author

Alexander Adamchuk, Apr 11 2006

Keywords

Comments

Sum_{j=1..n} Sum_{i=1..n} 1/(i+j-1) = A117731(n) / A117664(n) = 2n * H'(2n) = 2n * A058313(2n) / A058312(2n), where H'(2n) is 2n-th alternating sign Harmonic Number. H'(2n) = H(2n) - H(n), where H(n) is n-th Harmonic Number. - Alexander Adamchuk, Apr 23 2006

Examples

			For n=2, the 2 X 2 Hilbert matrix is [1, 1/2; 1/2, 1/3], so a(2) = denominator(1 + 1/2 + 1/2 + 1/3) = denominator(7/3) = 3.
The n X n Hilbert matrix begins:
    1 1/2 1/3 1/4  1/5  1/6  1/7  1/8 ...
  1/2 1/3 1/4 1/5  1/6  1/7  1/8  1/9 ...
  1/3 1/4 1/5 1/6  1/7  1/8  1/9 1/10 ...
  1/4 1/5 1/6 1/7  1/8  1/9 1/10 1/11 ...
  1/5 1/6 1/7 1/8  1/9 1/10 1/11 1/12 ...
  1/6 1/7 1/8 1/9 1/10 1/11 1/12 1/13 ...
  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Denominator[Sum[1/(i + j - 1), {i, n}, {j, n}]], {n, 30}]

Formula

a(n) = A111876(n-1)/n.
a(n) = denominator( Sum_{j=1..n} Sum_{i=1..n} 1/(i+j-1) ). Numerator is A117731(n). - Alexander Adamchuk, Apr 23 2006
a(n) = denominator( Sum_{k=1..n} (2*k)/(n+k) ). - Peter Bala, Oct 10 2021

A296519 Denominator of n*Sum_{k=1..n} 1/(n+k).

Original entry on oeis.org

2, 6, 20, 210, 504, 4620, 51480, 18018, 272272, 23279256, 21162960, 446185740, 2059318800, 5736673800, 22181805360, 1289317436550, 1213475234400, 8022419605200, 281206918792800, 267146572853160, 10431437606647200, 428163098127382800, 409547311252279200
Offset: 1

Views

Author

Eric W. Weisstein, Dec 14 2017

Keywords

Comments

a(n) is divisible by all primes p such that the numerator of Sum_{n < k*p <= n} 1/k is not divisible by p, in particular by all primes from n+1 to 2*n-1. - Robert Israel, May 21 2020

Examples

			The first few fractions are 1/2, 7/6, 37/20, 533/210, 1627/504, 18107/4620, 237371/51480, ... = A117731/a(n).
		

Crossrefs

Cf. A111876, A117731 (numerators), A117664.

Programs

  • Magma
    [Denominator(n*(HarmonicNumber(2*n) -HarmonicNumber(n))): n in [1..40]]; // G. C. Greubel, Jul 24 2023
    
  • Maple
    N:= 30: # for a(1)..a(N)
    H:= ListTools:-PartialSums([seq(1/i,i=1..2*N)]):
    map(n -> denom(n*(H[2*n]-H[n])), [$1..N]); # Robert Israel, May 21 2020
  • Mathematica
    Table[n (HarmonicNumber[2 n] - HarmonicNumber[n]), {n, 30}] // Denominator
  • PARI
    a(n) = denominator(n*sum(k=1, n, 1/(n+k))); \\ Michel Marcus, Dec 14 2017
    
  • SageMath
    [denominator(n*(harmonic_number(2*n,1) - harmonic_number(n,1))) for n in range(1,41)] # G. C. Greubel, Jul 24 2023

Formula

From G. C. Greubel, Jul 24 2023: (Start)
a(n) = 2*A117664(n).
a(n) = 2*A111876(n-1)/n. (End)

A129764 Numerator of the sum of all elements of n X n X n cubic array M[i,j,k] = 1/(i+j+k-2).

Original entry on oeis.org

1, 15, 1133, 1177, 129149, 349673, 57087959, 345322023, 14272692271, 40165727117, 217549734472087, 14553241481573, 18901300532988407, 40603763694792631, 9565202506169243753, 63888449105310899
Offset: 1

Views

Author

Alexander Adamchuk, May 15 2007

Keywords

Comments

a(n) is a 3-d analog of Wolstenholme Numbers (A001008) that are the numerators of Harmonic Numbers H(n) = Sum[ 1/i, {i,1,n} ]. n X n X n cubic array M[i,j,k] = 1/(i+j+k-2) is a 3-d analog of n X n Hilbert Matrix with elements M[i,j] = 1/(i+j-1). p divides a((p+1)/3) for prime p = {5,11,17,23,29,41,47,53,59,71,83,89,...} = A007528 Primes of form 6n-1. Sum[ Sum[ Sum[ (i+j+k-2), {i,1,n} ], {j,1,n} ], {k,1,n} ] = 1/2*n^3*(3n-1).

Crossrefs

Cf. A001008 = Wolstenholme numbers: numerator of harmonic number H(n)=Sum_{i=1..n} 1/i. Cf. A082687, A117731, A007528.

Programs

  • Mathematica
    Table[ Numerator[ Sum[ Sum[ Sum[ 1/(i+j+k-2), {i,1,n} ], {j,1,n} ], {k,1,n} ] ], {n,1,30} ]

Formula

a(n) = Numerator[ Sum[ Sum[ Sum[ 1/(i+j+k-2), {i,1,n} ], {j,1,n} ], {k,1,n} ] ].
Showing 1-8 of 8 results.