A098118
a(n) = n!*[x^n] (log(x+1) * Sum_{j=0..n} C(2*n,j)*x^j).
Original entry on oeis.org
1, 7, 74, 1066, 19524, 434568, 11393808, 343976400, 11752855200, 448372820160, 18892607771520, 871406506494720, 43669963405555200, 2362804077652300800, 137275789612950374400, 8523776656311156172800, 563309040416875548364800
Offset: 1
n=2: HilbertMatrix[n,n]
1 1/2
1/2 1/3
so a(2) = (2*2-1)! / 2! * (1 + 1/2 + 1/2 + 1/3) = 7.
The n X n Hilbert matrix begins:
1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 ...
1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 ...
1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10 ...
1/4 1/5 1/6 1/7 1/8 1/9 1/10 1/11 ...
1/5 1/6 1/7 1/8 1/9 1/10 1/11 1/12 ...
1/6 1/7 1/8 1/9 1/10 1/11 1/12 1/13 ...
G.f. = x + 7*x^2 + 74*x^3 + 1066*x^4 + 19524*x^5 + 434568*x^6 + ...
-
A098118 := n -> n!*coeff(series(ln(x+1)*add(binomial(2*n,j)*x^j, j=0..n), x, n+1), x, n): seq(A098118(n),n=1..17); # Peter Luschny, Jan 18 2015
A098118 := n -> hypergeom([1,1,1-n],[2,n+2],1)*n*(2*n)!/(n+1)!:
seq(simplify(A098118(n)), n=1..17); # Peter Luschny, Jun 11 2016
A098118 := n -> sum(abs(Stirling1(n,k))*k*(n+1)^(k-1), k=1..n):
seq(A098118(n), n=1..17); # Ondrej Kutal, Oct 20 2021
-
Table[(2n - 1)!/n! Sum[ 1/(i + j - 1), {i, n}, {j, n}], {n, 17}]
a[ n_] := If[ n < 1, 0, (2 n)! / n! Sum[ -(-1)^k / k, {k, 2 n}]]; (* Michael Somos, Dec 09 2013 *)
a[ n_] := If[ n < 1, 0, (2 n - 1)! / n! Sum[ 1 / (i + j - 1), {i, n}, {j, n}]]; (* Michael Somos, Apr 14 2015 *)
a[ n_] := If[ n < 1, 0, n! SeriesCoefficient[ (Log[ EllipticNomeQ[ m] / (m/16)]) EllipticK[ m] 16^n / (Binomial[2 n, n] 2 Pi), {m, 0, n}]]; (* Michael Somos, Apr 14 2015 *)
a[ n_] := If[ n < 1, 0, (2 n + 1)! / n! SeriesCoefficient[ PolyLog[2, -1] + PolyLog[2, (1 - x)/2] + Log[(1 + x)/2] Log[(1 - x)/2]/2 + Log[(1 + x)/(1 - x)] Log[2]/2, {x, 0, 2 n + 1}]]; (* Michael Somos, Apr 14 2015 *)
-
{a(n) = if( n<1, 0, (2*n)! / n! * sum( k=1, 2*n, -(-1)^k / k))}; /* Michael Somos, Dec 09 2013 */
A082687
Numerator of Sum_{k=1..n} 1/(n+k).
Original entry on oeis.org
1, 7, 37, 533, 1627, 18107, 237371, 95549, 1632341, 155685007, 156188887, 3602044091, 18051406831, 7751493599, 225175759291, 13981692518567, 14000078506967, 98115155543129, 3634060848592973, 3637485804655193
Offset: 1
H'(2n) = H(2n) - H(n) = {1/2, 7/12, 37/60, 533/840, 1627/2520, 18107/27720, 237371/360360, 95549/144144, 1632341/2450448, 155685007/232792560, ...}, where H(n) = A001008/A002805.
n=2: HilbertMatrix(n,n)
1 1/2
1/2 1/3
so a(2) = Numerator(1 + 1/2 + 1/2 + 1/3) = Numerator(7/3) = 7.
The n X n Hilbert matrix begins:
1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 ...
1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 ...
1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10 ...
1/4 1/5 1/6 1/7 1/8 1/9 1/10 1/11 ...
1/5 1/6 1/7 1/8 1/9 1/10 1/11 1/12 ...
1/6 1/7 1/8 1/9 1/10 1/11 1/12 1/13 ...
-
[Numerator((HarmonicNumber(2*n) -HarmonicNumber(n))): n in [1..40]]; // G. C. Greubel, Jul 24 2023
-
a := n -> numer(harmonic(2*n) - harmonic(n)):
seq(a(n), n=1..20); # Peter Luschny, Nov 02 2017
-
Numerator[Sum[1/k,{k,1,2*n}] - Sum[1/k,{k,1,n}]] (* Alexander Adamchuk, Apr 11 2006 *)
Table[Numerator[Sum[1/(i + j - 1), {i, n}, {j, n}]], {n, 20}] (* Alexander Adamchuk, Apr 11 2006 *)
Table[HarmonicNumber[2 n] - HarmonicNumber[n], {n, 20}] // Numerator (* Eric W. Weisstein, Dec 14 2017 *)
-
a(n) = numerator(sum(k=1, n, 1/(n+k))); \\ Michel Marcus, Dec 14 2017
-
[numerator(harmonic_number(2*n,1) - harmonic_number(n,1)) for n in range(1,41)] # G. C. Greubel, Jul 24 2023
A117731
Numerator of the fraction n*Sum_{k=1..n} 1/(n+k).
Original entry on oeis.org
1, 7, 37, 533, 1627, 18107, 237371, 95549, 1632341, 155685007, 156188887, 3602044091, 18051406831, 54260455193, 225175759291, 13981692518567, 14000078506967, 98115155543129, 3634060848592973, 3637485804655193
Offset: 1
The first few fractions are 1/2, 7/6, 37/20, 533/210, 1627/504, 18107/4620, 237371/51480, ... = A117731/A296519.
For n=2, the n X n Hilbert matrix is
1 1/2
1/2 1/3
Thus, a(2) = numerator(1 + 1/2 + 1/2 + 1/3) = numerator(7/3) = 7.
The n X n Hilbert matrix begins as follows:
1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 ...
1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 ...
1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10 ...
1/4 1/5 1/6 1/7 1/8 1/9 1/10 1/11 ...
1/5 1/6 1/7 1/8 1/9 1/10 1/11 1/12 ...
1/6 1/7 1/8 1/9 1/10 1/11 1/12 1/13 ...
...
-
[Numerator(n*(HarmonicNumber(2*n) -HarmonicNumber(n))): n in [1..40]]; // G. C. Greubel, Jul 24 2023
-
Numerator[Table[n Sum[1/(n + k), {k, n}], {n, 1, 100}]]
Numerator[Table[Sum[Sum[1/(i + j - 1), {i, n}], {j, n}], {n, 30}]] (* Alexander Adamchuk, Apr 23 2006 *)
Table[n (HarmonicNumber[2 n] - HarmonicNumber[n]), {n, 20}] // Numerator (* Eric W. Weisstein, Dec 14 2017 *)
-
a(n) = numerator(n*sum(k=1, n, 1/(n+k))); \\ Michel Marcus, Dec 14 2017
-
[numerator(n*(harmonic_number(2*n,1) - harmonic_number(n,1))) for n in range(1,41)] # G. C. Greubel, Jul 24 2023
A117664
Denominator of the sum of all elements in the n X n Hilbert matrix M(i,j) = 1/(i+j-1), where i,j = 1..n.
Original entry on oeis.org
1, 3, 10, 105, 252, 2310, 25740, 9009, 136136, 11639628, 10581480, 223092870, 1029659400, 2868336900, 11090902680, 644658718275, 606737617200, 4011209802600, 140603459396400, 133573286426580, 5215718803323600
Offset: 1
For n=2, the 2 X 2 Hilbert matrix is [1, 1/2; 1/2, 1/3], so a(2) = denominator(1 + 1/2 + 1/2 + 1/3) = denominator(7/3) = 3.
The n X n Hilbert matrix begins:
1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 ...
1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 ...
1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10 ...
1/4 1/5 1/6 1/7 1/8 1/9 1/10 1/11 ...
1/5 1/6 1/7 1/8 1/9 1/10 1/11 1/12 ...
1/6 1/7 1/8 1/9 1/10 1/11 1/12 1/13 ...
...
-
Table[Denominator[Sum[1/(i + j - 1), {i, n}, {j, n}]], {n, 30}]
A091342
Given (1) f(h,j,a) = ( [ ((a/gcd(a,h)) / gcd(j+1,(a/gcd(a,h)))) * (h(j+1)) ] - [ ((a/gcd(a,h)) / gcd(j+1,(a/gcd(a,h)))) * (ja) ] ) / a then let (2) a(h) = d(h,j) = lcm( f(h,j,1) ... f(h,j,h) ).
Original entry on oeis.org
1, 3, 10, 105, 252, 2310, 25740, 45045, 680680, 11639628, 10581480, 223092870, 1029659400, 2868336900, 77636318760, 4512611027925, 4247163320400, 4011209802600, 140603459396400, 133573286426580, 5215718803323600
Offset: 1
Scott C. Macfarlan (scottmacfarlan(AT)covance.com), Mar 01 2004
a(5) = lcm(9,4,7,3) = 252
a(7) = lcm(13,6,11,5,9,4,1) = 25740
a(10)= lcm(19,9,17,4,3,7,13,3,11,1) = 11639628
a(14)= lcm(27,13,25,6,23,11,3,5,19,9,17,4,15,1) = 2868336900
n=2: HilbertMatrix[n,n]
1 1/2
1/2 1/3
so a(2) = Denominator[(1 - 1/2 - 1/2 + 1/3)] = Denominator[1/3] = 3.
The n X n Hilbert matrix begins:
1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 ...
1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 ...
1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10 ...
1/4 1/5 1/6 1/7 1/8 1/9 1/10 1/11 ...
1/5 1/6 1/7 1/8 1/9 1/10 1/11 1/12 ...
1/6 1/7 1/8 1/9 1/10 1/11 1/12 1/13 ...
-
Denominator[Table[Sum[Sum[(-1)^(i+j)*1/(i+j-1),{i,1,n}],{j,1,n}],{n,1,40}]] (* Alexander Adamchuk, Apr 11 2006 *)
A101029
Denominator of partial sums of a certain series.
Original entry on oeis.org
1, 10, 70, 420, 4620, 60060, 60060, 408408, 7759752, 38798760, 892371480, 4461857400, 13385572200, 55454513400, 1719089915400, 3438179830800, 24067258815600, 890488576177200, 890488576177200, 36510031623265200, 1569931359800403600, 1569931359800403600, 73786773910618969200
Offset: 1
n=2: HilbertMatrix[n,n]
1 1/2
1/2 1/3
so a(1) = (1/3)*denominator((1 + 1/2 + 1/2 + 1/3) - 1) = (1/3)*denominator(4/3) = 1.
The n X n Hilbert matrix begins:
1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 ...
1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 ...
1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10 ...
1/4 1/5 1/6 1/7 1/8 1/9 1/10 1/11 ...
1/5 1/6 1/7 1/8 1/9 1/10 1/11 1/12 ...
1/6 1/7 1/8 1/9 1/10 1/11 1/12 1/13 ...
-
Denominator[Table[Sum[1/(i + j - 1), {i, n}, {j, n}], {n,2, 27}]-Table[Sum[1/(i + j - 1), {i, n}, {j, n}], {n, 26}]]/3 (* Alexander Adamchuk, Apr 11 2006 *)
-
a(n) = denominator(3*sum(k=1, n, 1/((2*k-1)*k*(2*k+1)))); \\ Michel Marcus, Feb 28 2022
Showing 1-6 of 6 results.
Comments