cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A076782 a(n) = 10^(n^2).

Original entry on oeis.org

1, 10, 10000, 1000000000, 10000000000000000, 10000000000000000000000000, 1000000000000000000000000000000000000, 10000000000000000000000000000000000000000000000000, 10000000000000000000000000000000000000000000000000000000000000000, 1000000000000000000000000000000000000000000000000000000000000000000000000000000000
Offset: 0

Views

Author

Vincenzo Origlio (vincenzo.origlio(AT)itc.cnr.it), Nov 15 2002

Keywords

Comments

Number of n X n matrices over an alphabet of size 10.
The 10th term of this sequence is the googol (10^100).
The term in position 10^50 (sqrt(googol)) is the googolplex (10^googol).
a(n) = k^(n^2) with k = 2, 3, 4, ... counts n X n matrices over an alphabet of size k.

Crossrefs

Programs

A076781 a(n) = 6^(n^2).

Original entry on oeis.org

1, 6, 1296, 10077696, 2821109907456, 28430288029929701376, 10314424798490535546171949056, 134713546244127343440523266742756048896, 63340286662973277706162286946811886609896461828096
Offset: 0

Views

Author

Vincenzo Origlio (vincenzo.origlio(AT)itc.cnr.it), Nov 15 2002

Keywords

Comments

Number of n X n matrices over an alphabet of size 6.
a(n) = k^(n^2) with k = 2, 3, 4, ... counts n X n matrices over Z/kZ.

Crossrefs

Programs

Extensions

More terms from Philippe Deléham, Nov 24 2007
a(5) corrected by Vincenzo Librandi, May 30 2011

A076783 a(n) = 11^(n^2).

Original entry on oeis.org

1, 11, 14641, 2357947691, 45949729863572161, 108347059433883722041830251, 30912680532870672635673352936887453361, 1067189571633593786424240872639621090354383081702091, 4457915684525902395869512133369841539490161434991526715513934826241
Offset: 0

Views

Author

Vincenzo Origlio (vincenzo.origlio(AT)itc.cnr.it), Nov 15 2002

Keywords

Comments

Number of n X n matrices over GF(11).
a(n) = k^(n^2) with k = 2, 3, 4, ... counts n X n matrices over GF(k).

Crossrefs

Programs

Extensions

More terms from Rick L. Shepherd, May 06 2008

A135420 a(n) = 4^n * 5^(n^2).

Original entry on oeis.org

1, 20, 10000, 125000000, 39062500000000, 305175781250000000000, 59604644775390625000000000000, 291038304567337036132812500000000000000, 35527136788005009293556213378906250000000000000000
Offset: 0

Views

Author

Philippe Deléham, Dec 11 2007

Keywords

Comments

Hankel transform of A132864.
For n>0, a(n) is even with a last digit of 0 and is 1 when n=0. - Wesley Ivan Hurt, Dec 04 2013

Programs

Formula

a(n) = 4^n*5^(n^2) = A000302(n) * A060758(n).

A120840 5^(n^2)-3^(n^2).

Original entry on oeis.org

0, 2, 544, 1933442, 152544843904, 298022376588343682, 14551915078272216509641504, 17763568393763205317547489159863042, 542101086242748783319906107922486197863801344
Offset: 0

Views

Author

Mohammad K. Azarian, Aug 18 2006

Keywords

Crossrefs

Programs

Formula

a(n) = A060758(n)-A060722(n)=A095860(5,n)-A095860(3,n). - R. J. Mathar, Apr 24 2007

Extensions

Corrected by Ray Chandler, Sep 06 2006

A135349 6^n*5^(n^2).

Original entry on oeis.org

1, 30, 22500, 421875000, 197753906250000, 2317428588867187500000, 678934156894683837890625000000, 4972662281943485140800476074218750000000
Offset: 0

Views

Author

Philippe Deléham, Dec 07 2007

Keywords

Comments

Hankel transform of A130977 .

Programs

  • Mathematica
    Table[6^n*5^n^2,{n,0,8}] (* Harvey P. Dale, Aug 05 2015 *)

Formula

a(n)=6^n*5^(n^2)=A000400(n)*A060758(n).
Showing 1-6 of 6 results.