A060800 a(n) = p^2 + p + 1 where p runs through the primes.
7, 13, 31, 57, 133, 183, 307, 381, 553, 871, 993, 1407, 1723, 1893, 2257, 2863, 3541, 3783, 4557, 5113, 5403, 6321, 6973, 8011, 9507, 10303, 10713, 11557, 11991, 12883, 16257, 17293, 18907, 19461, 22351, 22953, 24807, 26733, 28057, 30103, 32221
Offset: 1
Examples
a(3) = 31 because 5^2 + 5 + 1 = 31.
Links
- Harry J. Smith, Table of n, a(n) for n = 1..1000
- R. J. Mathar, No common terms in the sequences sigma(p^i) and sigma(p^(i+1)) as p runs through the primes.
Crossrefs
Programs
-
Magma
[p^2+p+1: p in PrimesUpTo(200)]; // Vincenzo Librandi, Mar 20 2014
-
Maple
A060800:= n -> map (p -> p^(2)+p+1, ithprime(n)): seq (A060800(n), n=1..41); # Jani Melik, Jan 25 2011
-
Mathematica
#^2 + # + 1&/@Prime[Range[200]] (* Vincenzo Librandi, Mar 20 2014 *)
-
PARI
{ n=0; forprime (p=2, prime(1000), write("b060800.txt", n++, " ", p^2 + p + 1); ) } \\ Harry J. Smith, Jul 13 2009
Formula
a(n) = A036690(n) + 1.
Product_{n>=1} (1 - 1/a(n)) = zeta(3)/zeta(2) (A253905). - Amiram Eldar, Nov 07 2022
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), May 03 2001
Comments