cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060800 a(n) = p^2 + p + 1 where p runs through the primes.

Original entry on oeis.org

7, 13, 31, 57, 133, 183, 307, 381, 553, 871, 993, 1407, 1723, 1893, 2257, 2863, 3541, 3783, 4557, 5113, 5403, 6321, 6973, 8011, 9507, 10303, 10713, 11557, 11991, 12883, 16257, 17293, 18907, 19461, 22351, 22953, 24807, 26733, 28057, 30103, 32221
Offset: 1

Views

Author

Jason Earls, Apr 27 2001

Keywords

Comments

Terms are divisible by 3 iff p is of the form 6*m+1 (A002476). - Michel Marcus, Jan 15 2017

Examples

			a(3) = 31 because 5^2 + 5 + 1 = 31.
		

Crossrefs

Programs

  • Magma
    [p^2+p+1: p in PrimesUpTo(200)]; // Vincenzo Librandi, Mar 20 2014
  • Maple
    A060800:= n -> map (p -> p^(2)+p+1, ithprime(n)):
    seq (A060800(n), n=1..41); # Jani Melik, Jan 25 2011
  • Mathematica
    #^2 + # + 1&/@Prime[Range[200]] (* Vincenzo Librandi, Mar 20 2014 *)
  • PARI
    { n=0; forprime (p=2, prime(1000), write("b060800.txt", n++, " ", p^2 + p + 1); ) } \\ Harry J. Smith, Jul 13 2009
    

Formula

a(n) = A036690(n) + 1.
a(n) = 1 + A008864(n)*A000040(n) = (A030078(n) - 1)/A006093(n). - Reinhard Zumkeller, Aug 06 2007
a(n) = sigma(prime(n)^2) = A000203(A000040(n)^2). - Zak Seidov, Feb 13 2016
a(n) = A000203(A001248(n)). - Michel Marcus, Feb 15 2016
Product_{n>=1} (1 - 1/a(n)) = zeta(3)/zeta(2) (A253905). - Amiram Eldar, Nov 07 2022

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 03 2001