A060834 a(n) = 6*n^2 + 6*n + 31.
31, 43, 67, 103, 151, 211, 283, 367, 463, 571, 691, 823, 967, 1123, 1291, 1471, 1663, 1867, 2083, 2311, 2551, 2803, 3067, 3343, 3631, 3931, 4243, 4567, 4903, 5251, 5611, 5983, 6367, 6763, 7171, 7591, 8023, 8467, 8923, 9391, 9871, 10363, 10867, 11383
Offset: 0
Examples
a(29)=4903, prime. a(30)=5251, nonprime.
References
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 145.
- Donald D. Spencer, Computers in Number Theory, Computer Science Press, Rockville, MD, 1982, pp. 118-119.
Links
- Harry J. Smith, Table of n, a(n) for n = 0..1000
- T. Piezas, A collection of algebraic identities. 0023: Part 2, Prime Generating Polynomials, Section IV.
- Eric Weisstein's World of Mathematics, Prime-Generating Polynomial.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
GAP
List([0..80],n->6*n^2+6*n+31); # Muniru A Asiru, Apr 22 2018
-
Mathematica
Table[6n^2+6n+31,{n,0,60}] (* or *) LinearRecurrence[{3,-3,1},{31,43,67},60] (* Harvey P. Dale, Aug 09 2011 *)
-
PARI
a(n) = { 6*n^2 + 6*n + 31 } \\ Harry J. Smith, Jul 19 2009
Formula
From R. J. Mathar, Feb 05 2008: (Start)
O.g.f.: -(31-50*x+31*x^2)/(-1+x)^3.
a(n) = A049598(n)+31. (End)
a(0)=31, a(1)=43, a(2)=67, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Aug 09 2011
E.g.f.: exp(x)*(31 + 12*x + 6*x^2). - Stefano Spezia, Dec 26 2024
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), May 07 2001
Comments