A060867 a(n) = (2^n - 1)^2.
1, 9, 49, 225, 961, 3969, 16129, 65025, 261121, 1046529, 4190209, 16769025, 67092481, 268402689, 1073676289, 4294836225, 17179607041, 68718952449, 274876858369, 1099509530625, 4398042316801, 17592177655809, 70368727400449, 281474943156225, 1125899839733761
Offset: 1
Examples
a(2) = 9 because there are 10 (the second element in sequence A060704) singular 2 X 2 matrices over GF(2), that have rank <= 1 of which only the zero matrix has rank zero so a(2) = 10 - 1 = 9.
References
- Richard P. Stanley, Enumerative Combinatorics: Volume 1: Wadsworth & Brooks: 1986: p. 11.
Links
- Harry J. Smith, Table of n, a(n) for n = 1..200
- Michael Baake, Franz Gähler and Uwe Grimm, Examples of substitution systems and their factors, Journal of Integer Sequences, Vol. 16 (2013), Article 13.2.14; arXiv preprint, arXiv:1211.5466 [math.DS], 2012-2013. - From _N. J. A. Sloane_, Jan 03 2013
- Franck Ramaharo, A one-variable bracket polynomial for some Turk's head knots, arXiv:1807.05256 [math.CO], 2018.
- Eric Weisstein's World of Mathematics, Near-Square Prime.
- Index entries for linear recurrences with constant coefficients, signature (7,-14,8).
Programs
-
Maple
seq((Stirling2(n+1, 2))^2, n=1..25); # Zerinvary Lajos, Dec 20 2006
-
Mathematica
(2^Range[30] - 1)^2 (* Harvey P. Dale, Sep 15 2013 *) LinearRecurrence[{7, -14, 8}, {1, 9, 49}, 30] (* Harvey P. Dale, Sep 15 2013 *) Table[(2^n - 1)^2, {n, 30}] (* Eric W. Weisstein, Jun 29 2017 *)
-
PARI
a(n) = (2^n - 1)^2; \\ Michel Marcus, Mar 11 2016
-
Sage
[stirling_number2(n+1,2)^2 for n in range(1,25)] # Zerinvary Lajos, Mar 14 2009
Formula
a(n) = (2^n - 1)^2 = A000225(n)^2.
a(n) = sum_{j=1..n} sum_{k=1..n} binomial(n+j,n-k). - Yalcin Aktar, Dec 28 2011
G.f.: x*(1+2*x)/((1-x)(1-2*x)(1-4*x)). a(n) = 7*a(n-1)-14*a(n-2)+8*a(n-3). - Colin Barker, Feb 03 2012
E.g.f.: (1 - 2*exp(x) + exp(3*x))*exp(x). - Ilya Gutkovskiy, May 23 2016
Sum_{n>=1} 1/a(n) = A065443. - Amiram Eldar, Nov 12 2020
Extensions
Description changed to formula by Eric W. Weisstein, Jun 29 2017
Comments