A065779 Duplicate of A061839.
25, 225, 1225, 81225, 16281225, 7077116281225, 1642681227077116281225
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
For n = 3, a(3) = 321^^321 (mod 10^3) = 721. In fact, a(3) (mod 10^3) == a(4) (mod 10^3), since 721 (mod 10^3) == 8721 (mod 10^3).
tmod(b, n) = {if (b % n == 0, return (0)); if (b % n == 1, return (1)); if (gcd(b, n)==1, return (lift(Mod(b, n)^tmod(b, lift(znorder(Mod(b, n))))))); lift(Mod(b, n)^(eulerphi(n) + tmod(b, eulerphi(n))));} f(n) = my(t=n); forstep(k=n-1, 1, -1, t=t*10^#Str(k)+k); t; \\ A000422 a(n) = my(x=f(n)); tmod(x, 10^#Str(x)); \\ Michel Marcus, Sep 12 2021
ds[n_] := NestWhileList[FromDigits[Rest[IntegerDigits[#]]] &, n, # > 9 &]; Select[Range[4, 58]^2, Or @@ IntegerQ /@ Sqrt[Rest[ds[#]]] &] (* Jayanta Basu, Jul 10 2013 *)
a065807(m) = local(a, b, d, j, k, n); for(k=1, m, a=length(Str(n))-1; b=1; j=1; n=k^2; while(b, d=divrem(n, 10^j); if(d[1]>0&&issquare(d[2]), b=0; print1(n, ", "), if(j
isokend(n) = my(p=10); for(k=1, #Str(n)-1, if (issquare(n % p), return (1)); p*=10); isok(n) = issquare(n) && isokend(n); \\ Michel Marcus, Mar 17 2020
a(8) is given by the rightmost 10 digits of 2113853211^^2113853211 and thus a(8) = 5103763811. a(9) == a(8) (mod 10^10), i.e., the digits of a(9) end with the digits of a(8) (and then a(9) has 2 more preceding).
25 = 5^2; 625 = 25^2; 5625 = 75^2; 75625 = 275^2; 275625 = 525^2.
Comments