cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A053059 Squares whose product of digits is also a nonzero square.

Original entry on oeis.org

1, 4, 9, 49, 144, 289, 441, 1444, 7744, 11236, 11449, 11664, 11881, 13689, 14884, 16384, 16641, 19881, 21316, 26896, 28224, 29241, 29929, 31684, 36481, 38416, 41616, 42436, 42849, 43264, 43681, 44944, 48841, 49284, 55696, 69169, 76176
Offset: 1

Views

Author

Felice Russo, Feb 25 2000

Keywords

References

  • Felice Russo, A set of new Smarandache functions, sequences and conjectures in number theory, American Research Press 2000

Crossrefs

A061867 allows zeros. Cf. A000290.

Programs

  • Mathematica
    nzsQ[n_]:=Module[{pd=Times@@IntegerDigits[n]},pd!=0&&IntegerQ[Sqrt[pd]]]; Select[Range[2000]^2,nzsQ] (* Harvey P. Dale, Nov 13 2012 *)

Extensions

More terms from James Sellers, Feb 28 2000

A061380 Triangular numbers with product of digits also a triangular number.

Original entry on oeis.org

0, 1, 3, 6, 10, 66, 105, 120, 153, 190, 210, 231, 300, 351, 406, 465, 630, 703, 741, 780, 820, 903, 990, 1035, 1081, 1326, 1540, 1770, 1830, 2016, 2080, 2556, 2701, 2850, 3003, 3081, 3160, 3240, 3403, 3570, 4005, 4095, 4560, 4950, 5050, 5460, 5671, 6105
Offset: 1

Views

Author

Amarnath Murthy, May 02 2001

Keywords

Examples

			153 is a triangular number and the product of digits 15 is also a triangular number.
		

Crossrefs

Programs

  • Magma
    [t: n in [0..110] | IsSquare(8*p+1) where p is &*Intseq(t) where t is (n*(n+1) div 2)];  // Bruno Berselli, Jun 30 2011
    
  • Maple
    q:= n-> (l-> issqr(1+8*mul(i,i=l)))(convert(n, base, 10)):
    select(q, [seq(i*(i+1)/2, i=0..110)])[];  # Alois P. Heinz, Mar 17 2023
  • Mathematica
    tn=Table[n (n+1)/2, {n, 0, 110}] ;Select[tn,MemberQ[tn,Times@@IntegerDigits[#]]&] (* James C. McMahon, Sep 25 2024 *)
  • PARI
    isok(k) = ispolygonal(k, 3) && ispolygonal(vecprod(digits(k)), 3); \\ Michel Marcus, Mar 17 2023

Extensions

More terms from Erich Friedman, May 08 2001
Offset 1 from Michel Marcus, Mar 17 2023

A061869 Squares whose sum of digits as well as product of digits is a square (allowing zero).

Original entry on oeis.org

0, 1, 4, 9, 100, 144, 400, 441, 900, 2025, 2304, 2601, 3600, 8100, 9025, 10000, 10201, 10404, 10609, 10816, 11025, 12100, 14400, 14884, 16900, 19600, 21904, 22500, 30625, 30976, 32400, 40000, 40401, 40804, 41209, 44100, 44944, 48400, 48841
Offset: 1

Views

Author

Larry Reeves (larryr(AT)acm.org), May 11 2001

Keywords

Crossrefs

A061267 does not allow zero products.
Subsequence of A061867.

Programs

  • Maple
    filter:= proc(t) local L;
      L:= convert(t,base,10);
      issqr(convert(L,`+`)) and issqr(convert(L,`*`))
    end proc:
    select(filter, [seq(i^2,i=0..300)]); # Robert Israel, Feb 15 2023
  • Mathematica
    spdQ[n_]:=Module[{idn=IntegerDigits[n]},IntegerQ[Sqrt[Total[idn]]] && IntegerQ[ Sqrt[Times@@idn]]]; Select[Range[300]^2,spdQ] (* Harvey P. Dale, Jan 24 2013 *)
Showing 1-3 of 3 results.