cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062114 a(n) = 2*Fibonacci(n) - (1 - (-1)^n)/2.

Original entry on oeis.org

0, 1, 2, 3, 6, 9, 16, 25, 42, 67, 110, 177, 288, 465, 754, 1219, 1974, 3193, 5168, 8361, 13530, 21891, 35422, 57313, 92736, 150049, 242786, 392835, 635622, 1028457, 1664080, 2692537, 4356618, 7049155, 11405774, 18454929, 29860704, 48315633, 78176338, 126491971
Offset: 0

Views

Author

Olivier Gérard, Jun 05 2001

Keywords

Examples

			a(4) = a(3) + a(2) + (1+1)/2 = 3 + 2 + 1 = 6.
G.f. = x + 2*x^2 + 3*x^3 + 6*x^4 + 9*x^5 + 16*x^6 + 25*x^7 + ... - _Michael Somos_, Oct 17 2018
		

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(1+x-x^2)/((1-x)*(1+x)*(1-x-x^2)))); // G. C. Greubel, Oct 16 2018
  • Maple
    A062114 := proc(n)
        2*combinat[fibonacci](n)-(1-(-1)^n)/2 ;
    end proc: # R. J. Mathar, Aug 12 2012
    # second Maple program:
    a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <-1|-1|2|1>>^n.<<[$0..3][]>>)[1$2]:
    seq(a(n), n=0..50);  # Alois P. Heinz, Jul 01 2018
  • Mathematica
    Join[{a=0,b=1},Table[If[EvenQ[a],c=a+b+1,c=a+b];a=b;b=c,{n,0,5!}]](* Vladimir Joseph Stephan Orlovsky, Jan 10 2011 *)
    Table[2Fibonacci[n]-(1-(-1)^n)/2,{n,0,40}] (* or *) LinearRecurrence[ {1,2,-1,-1},{0,1,2,3},41] (* Harvey P. Dale, Nov 02 2011 *)
  • PARI
    { h=-1; g=1; for (n=0, 400, f=g + h; h=g; g=f; write("b062114.txt", n, " ", 2*f - (1 - (-1)^n)/2) ) } \\ Harry J. Smith, Aug 01 2009
    
  • PARI
    x='x+O('x^30); concat([0], Vec(x*(1+x-x^2)/((1-x)*(1+x)*(1-x-x^2) ))) \\ G. C. Greubel, Oct 16 2018
    

Formula

A bistable recurrence; Fibonacci with a grain of salt: a(0)=0; a(1)=1; a(n) = a(n-1) + a(n-2) + (1 + (-1)^n)/2.
a(n+1) = Sum_{k=0..n} binomial(n-floor(k/2), floor(k/2)). - Benoit Cloitre, May 05 2005
Starting with 1, equals row sums of triangle A134513. - Gary W. Adamson, Oct 28 2007
a(n) = a(n-1) + 2*a(n-2) - a(n-3) - a(n-4), n > 3. - Harvey P. Dale, Nov 02 2011
G.f.: x*(1+x-x^2)/( (1-x)*(1+x)*(1-x-x^2) ). - R. J. Mathar, Aug 12 2012
a(n) = -(-1)^n * a(-n) for all n in Z. - Michael Somos, Oct 17 2018

Extensions

Definition corrected by Harry J. Smith, Aug 01 2009