A062298 Number of nonprimes <= n.
1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 6, 7, 7, 8, 9, 10, 10, 11, 11, 12, 13, 14, 14, 15, 16, 17, 18, 19, 19, 20, 20, 21, 22, 23, 24, 25, 25, 26, 27, 28, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 42, 43, 43, 44, 45, 46, 47, 48, 48, 49, 50, 51, 51, 52, 52, 53
Offset: 1
Keywords
Examples
a(19) = 11 as there are 8 primes up to 19 (inclusive).
Links
- Harry J. Smith, Table of n, a(n) for n = 1..1000
- Ya-Ping Lu, Lower Bounds for the Number of Primes in Some Integer Intervals
Programs
-
Haskell
a062298 n = a062298_list !! (n-1) a062298_list = scanl1 (+) $ map (1 -) a010051_list -- Reinhard Zumkeller, Oct 10 2013
-
Magma
[n - #PrimesUpTo(n): n in [1..100]]; // Vincenzo Librandi, Aug 05 2015
-
Maple
NumComposites := proc(N::posint) local count, i:count := 0:for i from 1 to N do if not isprime(i) then count := count + 1 fi:od: count;end:seq(NumComposites(binomial(k+1,k)), k=0..73); # Zerinvary Lajos, May 26 2008 A062298 := proc(n) n-numtheory[pi](n) ; end: seq(A062298(n),n=1..120) ; # R. J. Mathar, Sep 27 2009
-
Mathematica
Table[n-PrimePi[n],{n,80}] (* Harvey P. Dale, May 10 2012 *) Accumulate[Table[If[PrimeQ[n],0,1],{n,100}]] (* Harvey P. Dale, Feb 15 2017 *)
-
PARI
a(n) = n-primepi(n); \\ Harry J. Smith, Aug 04 2009
-
Python
from sympy import primepi print([n - primepi(n) for n in range(1, 101)]) # Indranil Ghosh, Mar 29 2017
Formula
a(n) = n - A000720(n).
a(n) = 1 + A065855(n). - David James Sycamore, Jul 23 2018
Extensions
Corrected and extended by Vladeta Jovovic, Jun 22 2001
Comments