A062318 Numbers of the form 3^m - 1 or 2*3^m - 1; i.e., the union of sequences A048473 and A024023.
0, 1, 2, 5, 8, 17, 26, 53, 80, 161, 242, 485, 728, 1457, 2186, 4373, 6560, 13121, 19682, 39365, 59048, 118097, 177146, 354293, 531440, 1062881, 1594322, 3188645, 4782968, 9565937, 14348906, 28697813, 43046720, 86093441, 129140162
Offset: 1
Examples
The first rows in Pascal's triangle with no multiples of 3 are: row 0: 1; row 1: 1, 1; row 2: 1, 2, 1; row 5: 1, 5, 10, 10, 5, 1; row 8: 1, 8, 28, 56, 70, 56, 28, 8, 1;
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Daniel Birmajer, Juan B. Gil, Jordan O. Tirrell, and Michael D. Weiner, Pattern-avoiding stabilized-interval-free permutations, arXiv:2306.03155 [math.CO], 2023.
- Sayan Dutta, Lorenz Halbeisen, and Norbert Hungerbühler, Properties of Hesse derivatives of cubic curves, arXiv:2309.05048 [math.AG], 2023. See p. 9.
- Gyula Tasi and Fujio Mizukami, Quantum algebraic-combinatoric study of the conformational properties of n-alkanes, J. Math. Chemistry, 25, 1999, 55-64 (see p. 60).
- Index entries for linear recurrences with constant coefficients, signature (1,3,-3).
Crossrefs
Moore lower bound on the order of a (k,g) cage: A198300 (square); rows: A000027 (k=2), A027383 (k=3), this sequence (k=4), A061547 (k=5), A198306 (k=6), A198307 (k=7), A198308 (k=8), A198309 (k=9), A198310 (k=10), A094626 (k=11); columns: A020725 (g=3), A005843 (g=4), A002522 (g=5), A051890 (g=6), A188377 (g=7). - Jason Kimberley, Oct 30 2011
Cf. A037233 (actual order of a (4,g)-cage).
Programs
-
Magma
I:=[0,1,2]; [n le 3 select I[n] else Self(n-1)+3*Self(n-2) -3*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Apr 20 2012
-
Maple
A062318 :=proc(n) if n mod 2 = 1 then 3^((n-1)/2)-1 else 2*3^(n/2-1)-1 fi end proc: seq(A062318(n), n=1..37); # Emeric Deutsch, Feb 03 2005, offset updated
-
Mathematica
CoefficientList[Series[x^2*(1+x)/((1-x)*(1-3*x^2)),{x,0,40}],x] (* Vincenzo Librandi, Apr 20 2012 *) A062318[n_]:= (1/3)*(Boole[n==0] -3 +3^(n/2)*(2*Mod[n+1,2] +Sqrt[3] *Mod[n, 2])); Table[A062318[n], {n, 50}] (* G. C. Greubel, Apr 17 2023 *)
-
PARI
a(n)=3^(n\2)<
M. F. Hasler, Oct 06 2014 -
SageMath
def A062318(n): return (1/3)*(int(n==0) - 3 + 2*((n+1)%2)*3^(n/2) + (n%2)*3^((n+1)/2)) [A062318(n) for n in range(1,41)] # G. C. Greubel, Apr 17 2023
Formula
a(n) = 2*3^(n/2-1)-1 if n is even; a(n) = 3^(n/2-1/2)-1 if n is odd. - Emeric Deutsch, Feb 03 2005, offset updated.
From Paul Curtz, Feb 21 2008: (Start)
a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3).
Partial sums of A108411. (End)
G.f.: x^2*(1+x)/((1-x)*(1-3*x^2)). - Colin Barker, Apr 02 2012
a(2n+1) = 3*a(2n-1) + 2; a(2n) = ( a(2n-1) + a(2n+1) )/2. See A060647 for case where a(1)= 1. - Richard R. Forberg, Nov 30 2013
a(n) = 2^((1+(-1)^n)/2) * 3^((2*n-3-(-1)^n)/4) - 1. - Luce ETIENNE, Aug 29 2014
E.g.f.: (1 - 3*cosh(x) + 2*cosh(sqrt(3)*x) - 3*sinh(x) + sqrt(3)*sinh(sqrt(3)*x))/3. - Stefano Spezia, Apr 06 2022
a(n) = (1/3)*([n=0] - 3 + (1+(-1)^n)*3^(n/2) + ((1-(-1)^n)/2)*3^((n+1)/2)). - G. C. Greubel, Apr 17 2023
Extensions
More terms from Emeric Deutsch, Feb 03 2005
Entry revised by N. J. A. Sloane, Jul 29 2011
Comments