cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A074283 Sum of the aliquot divisors of n-th Fibonacci number.

Original entry on oeis.org

0, 0, 1, 1, 1, 7, 1, 11, 20, 17, 1, 259, 1, 43, 506, 549, 1, 2816, 151, 5331, 6778, 289, 1, 110880, 18037, 755, 124342, 155949, 1, 1310680, 2975, 1213179, 1821962, 5169, 2697343, 33280848, 506383, 1416031, 32030858, 106878261, 62159, 295708904, 1
Offset: 1

Views

Author

Shyam Sunder Gupta, Sep 21 2002

Keywords

Examples

			a(6) = 7 because the sum of the aliquot divisors of the 6th Fibonacci number (i.e. 8) is 1 + 2 + 4 = 7.
		

Crossrefs

Cf. A000045, A001065, A063477. - Omar E. Pol, Dec 20 2008

Programs

  • Mathematica
    Table[Total[Most[Divisors[n]]],{n,Fibonacci[Range[50]]}] (* Harvey P. Dale, Dec 12 2013 *)

Formula

a(n) = A001065(A000045(n)). - Omar E. Pol, Dec 20 2008
a(n) = A063477(n) - A000045(n). - Amiram Eldar, Aug 27 2020

A074726 Numbers k such that sigma(F(k)) > 2*F(k) where F(k) is the k-th Fibonacci number.

Original entry on oeis.org

12, 18, 24, 30, 36, 40, 42, 48, 54, 60, 72, 80, 84, 90, 96, 108, 120, 126, 132, 140, 144, 150, 156, 160, 162, 168, 180, 192, 198, 200, 204, 210, 216, 225, 228, 234, 240, 252, 264, 270, 276, 280, 288, 294, 300, 306, 312, 315, 320
Offset: 1

Views

Author

Benoit Cloitre, Sep 04 2002

Keywords

Comments

Conjecture: sigma(F(n)) > 2*F(n) if and only if F(n) is a Zumkeller number except for n = 12. Verified for n <= 371. - M. Farrokhi D. G., Aug 16 2020
The asymptotic density of this sequence is larger than 184/1225 = 0.1502... (Wall, 1982). - Amiram Eldar, Feb 05 2022

Crossrefs

Programs

  • Mathematica
    Select[ Range[256], DivisorSigma[1, Fibonacci[ #1]] > 2*Fibonacci[ #1] & ]
  • PARI
    isok(k) = my(f=fibonacci(k)); sigma(f) > 2*f; \\ Michel Marcus, Feb 05 2022

Formula

It seems that a(n) is asymptotic to c*n with 6 < c < 6.5.

Extensions

Edited and extended by Robert G. Wilson v, Sep 06 2002

A366772 Sum of the divisors of A001045(n) (Jacobsthal numbers).

Original entry on oeis.org

1, 1, 4, 6, 12, 32, 44, 108, 260, 384, 684, 2688, 2732, 5632, 15936, 27864, 43692, 153920, 174764, 499968, 953920, 1477440, 2796204, 11708928, 12253248, 22380544, 69769600, 115568640, 181990200, 620101632, 715827884, 1826150832, 3880589184, 5726797824
Offset: 1

Views

Author

Sean A. Irvine, Oct 21 2023

Keywords

Examples

			a(9) = 260 because Jacobsthal(9) = 171 has divisors {1, 3, 9, 19, 57, 171}.
		

Crossrefs

Formula

a(n) = sigma(Jacobsthal(n)) = A000203(A001045(n)).

A366783 Sum of the divisors of A000073(n) (tribonacci numbers).

Original entry on oeis.org

1, 1, 3, 7, 8, 14, 60, 84, 121, 150, 414, 1560, 1352, 2304, 7239, 12480, 10713, 22400, 67032, 154056, 166560, 334880, 770160, 1322090, 2020564, 3712800, 8461404, 21427200, 17008752, 37733696, 154277568, 219104032, 249664896, 341958960, 1575703584, 1997069256
Offset: 2

Views

Author

Sean A. Irvine, Oct 22 2023

Keywords

Examples

			a(8)=60 because the 8th tribonacci number 24 has divisors {1, 2, 3, 4, 6, 8, 12, 24}.
		

Crossrefs

Programs

  • Mathematica
    DivisorSigma[1, LinearRecurrence[{1, 1, 1}, {1, 1, 2}, 36]] (* Amiram Eldar, Oct 23 2023 *)

Formula

a(n) = A000203(A000073(n)).

A350690 Numbers k that divide the sum of divisors of Fibonacci(k).

Original entry on oeis.org

1, 3, 4, 7, 8, 9, 13, 14, 16, 17, 18, 19, 21, 23, 24, 26, 27, 28, 30, 31, 32, 34, 36, 37, 38, 39, 42, 43, 44, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 62, 63, 64, 67, 68, 69, 70, 71, 72, 73, 74, 76, 78, 79, 81, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 96
Offset: 1

Views

Author

Amiram Eldar, Jan 12 2022

Keywords

Comments

This sequence is infinite (Luca, 2002).

Examples

			3 is a term since 3 divides sigma(Fibonacci(3)) = sigma(2) = 3.
4 is a term since 4 divides sigma(Fibonacci(4)) = sigma(3) = 4.
		

Crossrefs

Similar sequences: A074698, A075775.

Programs

  • Mathematica
    Select[Range[100], Divisible[DivisorSigma[1, Fibonacci[#]], #] &]
  • Python
    from sympy import divisor_sigma, fibonacci
    print([k for k in range(1, 97) if divisor_sigma(fibonacci(k)) % k == 0])
    # Karl-Heinz Hofmann, Jan 12 2022

A181090 Sum_{d|F(n)} d^3, where F(n) are the Fibonacci numbers.

Original entry on oeis.org

1, 1, 9, 28, 126, 585, 2198, 9632, 44226, 167832, 704970, 3543517, 12649338, 53609220, 257397588, 1000032768, 4073003174, 19720373400, 73088555292, 323884878912, 1476102415284, 5555586582000, 23533806109394
Offset: 1

Views

Author

Michel Lagneau, Oct 02 2010

Keywords

Examples

			a(6) = 585 is in the sequence because Fibonacci(6) = 8, and 1^3 + 2^3 + 4^3 + 8^3 = 585.
		

Crossrefs

Programs

  • Mathematica
    Table[Plus@@(Transpose[DivisorSigma[3,Fibonacci[n]]][[1]]), {n, 30}]

A276811 a(n) = sigma(Fibonacci(k))/Fibonacci(n) where k is the least number such that Fibonacci(n) divides sigma(Fibonacci(k)), or -1 if no such k exists.

Original entry on oeis.org

1, 1, 2, 1, 3, 4, 31, 20, 47, 5832, 322, 84, 4576568315415066934826490, 324, 843, 480, 3769607182320, 2209, 707932145558030519866865515025923563263974776037874477588352, 69670959389872974262939756520, 39603
Offset: 1

Views

Author

Altug Alkan, Nov 05 2016

Keywords

Comments

Least k such that Fibonacci(n) divides sigma(Fibonacci(k)) are 1, 1, 4, 3, 6, 8, 12, 14, 17, 27, 23, 20, 131, 26, 29, 28, 77, 34, 305, 158, 43, ...

Examples

			a(7) = 31 because least k such that Fibonacci(7) divides sigma(Fibonacci(k)) is 12 and sigma(Fibonacci(12))/Fibonacci(7) = 31.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = 1, fn = Fibonacci@ n}, While[ds = DivisorSigma[1, Fibonacci[k]]; Mod[ds, fn] > 0, k++]; ds/fn]; Array[f, 21] (* Robert G. Wilson v, Nov 06 2016 *)
Showing 1-7 of 7 results.