cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 47 results. Next

A105017 Positions of records in A064097.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 19, 23, 43, 47, 94, 139, 235, 283, 517, 659, 1081, 1319, 2209, 2879, 5758, 8637, 13301, 20147, 30337, 49727, 61993, 103823, 135313, 247439, 366683, 606743, 811879, 1266767, 1739761, 2913671, 3797401, 5827343, 8288641, 16577282, 22784407, 37346483, 58003213, 81768767
Offset: 1

Views

Author

Hugo Pfoertner, Feb 17 2006

Keywords

Comments

With a(1) = 1, a(n) is the smallest number m such that the number of iterations of k -> k - k/p, p being any prime factor of k, needed to reach 1 starting at k = m is equal to n-1. (See Example section.) - Jaroslav Krizek, Feb 15 2010
a(n) =~ sqrt(e^(5n/6)). - Robert G. Wilson v, Aug 11 2022

Examples

			a(6)=11 because m=11 requires 6-1 = 5 iterations of r -> r - (largest divisor d < r) to reach 1 (the 5 iterations are 11-1=10, 10-5=5, 5-1=4, 4-2=2, and 2-1=1) and 11 is the smallest such number m. - _Jaroslav Krizek_, Feb 15 2010
		

Crossrefs

Programs

  • Maple
    A105017 := proc()
        local maxa,a ;
        maxa := -999 ;
        for n from 1 do
            a := A064097(n) ;
            if a > maxa then
                printf("%d\n",n) ;
                maxa :=a ;
            end if;
        end do:
    end proc:
    A105017() ; # R. J. Mathar, Aug 07 2022
  • Mathematica
    g[n_] := Block[{p = Select[1 + Divisors@n, PrimeQ]}, n*p/(p - 1)]; f[n_] := f[n] = Block[{lst = Union@Flatten[g@# & /@ f[n - 1]]}, If[ Length@ lst > 325, lst = Take[lst, 325 (* This limit must be increased for greater n's from the start. *) ]]; lst]; f[1] = {1}; f[0] = {0}; lst = {}; Do[ AppendTo[lst, Min[ f[n]]]; f[n - 1] =., {n, 44}]; lst (* Robert G. Wilson v, Aug 11 2022 *)
  • PARI
    a=vectorsmall(10^7); a[1]=0;
    for(n=2,#a,if(isprime(n),a[n]=1+a[n-1],f=factor(n);a[n]=a[f[1,1]]+a[n/f[1,1]])); \\ computes A064097
    r=-oo; for(k=1,#a,if(a[k]>r,print1(k,", ");r=a[k])); \\ Hugo Pfoertner, Mar 16 2020

Extensions

a(1)=1 inserted by Robert G. Wilson v, Mar 16 2020

A334111 Irregular triangle where row n gives all terms k for which A064097(k) = n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 7, 9, 10, 12, 16, 11, 13, 14, 15, 17, 18, 20, 24, 32, 19, 21, 22, 25, 26, 27, 28, 30, 34, 36, 40, 48, 64, 23, 29, 31, 33, 35, 37, 38, 39, 41, 42, 44, 45, 50, 51, 52, 54, 56, 60, 68, 72, 80, 96, 128, 43, 46, 49, 53, 55, 57, 58, 61, 62, 63, 65, 66, 70, 73, 74, 75, 76, 78, 81, 82, 84
Offset: 0

Views

Author

Keywords

Comments

Applying map k -> (p-1)*(k/p) to any term k on any row n > 1, where p is any prime factor of k, gives one of the terms on preceding row n-1.
Any prime that appears on row n is 1 + {some term on row n-1}.
The e-th powers of the terms on row n form a subset of terms on row (e*n). More generally, a product of terms that occur on rows i_1, i_2, ..., i_k can be found at row (i_1 + i_2 + ... + i_k), because A064097 is completely additive.
A001221(k) gives the number of terms on the row above that are immediate descendants of k.
A067513(k) gives the number of terms on the row below that lead to k.

Examples

			Rows 0-6 of the irregular table:
0 |   1;
1 |   2;
2 |   3, 4;
3 |   5, 6, 8;
4 |   7, 9, 10, 12, 16;
5 |  11, 13, 14, 15, 17, 18, 20, 24, 32;
6 |  19, 21, 22, 25, 26, 27, 28, 30, 34, 36, 40, 48, 64;
		

Crossrefs

Cf. A105017 (left edge), A000079 (right edge), A175125 (row lengths).
Cf. also A058812, A334100.

Programs

  • Mathematica
    f[n_] := Length@ NestWhileList[# - #/FactorInteger[#][[1, 1]] &, n, # != 1 &]; SortBy[ Range@70, f]
    (* Second program *)
    With[{nn = 8}, Values@ Take[KeySort@ PositionIndex@ Array[-1 + Length@ NestWhileList[# - #/FactorInteger[#][[1, 1]] &, #, # > 1 &] &, 2^nn], nn + 1]] // Flatten (* Michael De Vlieger, Apr 18 2020 *)
  • PARI
    A060681(n) = (n-if(1==n,n,n/vecmin(factor(n)[,1])));
    A064097(n) = if(1==n,0,1+A064097(A060681(n)));
    for(n=0, 10, for(k=1,2^n,if(A064097(k)==n, print1(k,", "))));

A076091 Numbers n such that A064097(n) - A003313(n) = 1.

Original entry on oeis.org

23, 33, 43, 46, 47, 49, 59, 65, 66, 67, 69, 77, 83, 86, 92, 94, 98, 99, 107, 115, 118, 121, 130, 131, 132, 133, 134, 138, 139, 141, 145, 147, 149, 154, 163, 165, 166, 167, 172, 173, 177, 179, 184, 188, 195, 196, 197, 198, 199, 201, 203, 207, 209
Offset: 1

Views

Author

Benoit Cloitre, Oct 31 2002

Keywords

Crossrefs

Extensions

Corrected and extended by Hugo Pfoertner, Feb 17 2006

A076142 a(n) = A064097(n) - A003313(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2
Offset: 1

Views

Author

Benoit Cloitre, Oct 31 2002

Keywords

Comments

The positions where k = 0, 1, 2, ... occur for the first time are 1, 23, 129, 517, 2049, 4613, 33097, 33793, ... factorized as: 1, 23, 3*43, 11*47, 3*683, 7*659, 23*1439, 47*719, ... - Antti Karttunen, Aug 18 2017

Crossrefs

Formula

It seems that sum(k = 1, n, a(k)) * log(n)/n^2 -> c (0.006 < c < 0.01).

Extensions

Extended to 129 terms by Antti Karttunen, Aug 18 2017

A334090 a(1) = 0, and then after the first differences of A064097.

Original entry on oeis.org

0, 1, 1, 0, 1, 0, 1, -1, 1, 0, 1, -1, 1, 0, 0, -1, 1, 0, 1, -1, 1, 0, 1, -2, 1, 0, 0, 0, 1, -1, 1, -2, 2, -1, 1, -1, 1, 0, 0, -1, 1, 0, 1, -1, 0, 1, 1, -3, 2, -1, 0, 0, 1, -1, 1, -1, 1, 0, 1, -2, 1, 0, 0, -2, 2, 0, 1, -2, 2, -1, 1, -2, 1, 0, 0, 0, 1, -1, 1, -2, 1, 0, 1, -1, 0, 1, 0, -1, 1, -1, 1, 0, 0, 1, -1, -2, 1, 1, 0, -1, 1, -1, 1, -1, 1
Offset: 1

Views

Author

Antti Karttunen, Apr 17 2020

Keywords

Crossrefs

Cf. A334197 (positions of records).
Cf. also A332903.

Programs

Formula

a(1) = 0, and for n > 1, a(n) = A064097(n) - A064097(n-1).
a(n) = A334091(n) + A334195(n).

A307742 Quasi-logarithm A064097(n) of von Mangoldt's exponential function A014963(n).

Original entry on oeis.org

0, 1, 2, 1, 3, 0, 4, 1, 2, 0, 5, 0, 5, 0, 0, 1, 5, 0, 6, 0, 0, 0, 7, 0, 3, 0, 2, 0, 7, 0, 7, 1, 0, 0, 0, 0, 7, 0, 0, 0, 7, 0, 8, 0, 0, 0, 9, 0, 4, 0, 0, 0, 8, 0, 0, 0, 0, 0, 9, 0, 8, 0, 0, 1, 0, 0, 9, 0, 0, 0, 9, 0, 8, 0, 0, 0, 0, 0, 9, 0, 2, 0, 9, 0, 0, 0, 0, 0, 9
Offset: 1

Views

Author

I. V. Serov, Apr 26 2019

Keywords

Crossrefs

Programs

  • Mathematica
    qLog[n_] := qLog[n] = Module[{p, e}, If[n == 1, 0, Sum[{p, e} = pe; (1 + qLog[p-1])e, {pe, FactorInteger[n]}]]];
    a[n_] := qLog[Exp[MangoldtLambda[n]]];
    Array[a, 100] (* Jean-François Alcover, May 07 2019 *)
  • PARI
    mang(n) = ispower(n, , &n); if(isprime(n), n, 1); \\ A014963
    ql(n) = if (n==1, 0, if(isprime(n),1+ql(n-1), sumdiv(n,p, if(isprime(p),ql(p)*valuation(n,p))))); \\ A064097
    a(n) = ql(mang(n)); \\ Michel Marcus, Apr 26 2019

Formula

a(n) = A064097(A014963(n)).
a(n) = 1 + A064097(n-1) if n is prime.
a(n) = a(p) if n=p^k with k > 1.
a(n) = 0 if n is not a prime power or n = 1.
a(n) = -Sum_{d|n} A064097(d)*A008683(d) by Mobius inversion.

A373365 a(n) = gcd(A001414(n), A064097(n)), where A001414 is the sum of prime factors with repetition, and A064097 is a quasi-logarithm defined inductively by a(1) = 0 and a(p) = 1 + a(p-1) if p is prime and a(n*m) = a(n) + a(m) if m,n > 1.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 3, 1, 1, 2, 1, 5, 7, 1, 1, 2, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 8, 1, 2, 1, 1, 1, 1, 1, 1, 6, 2, 8, 1, 7, 1, 2, 1, 1, 1, 1, 1, 1, 9, 2, 1, 1, 4, 1, 1, 2, 2, 9, 1, 1, 1, 1, 1, 9, 1, 1, 3, 1, 1, 1, 1, 2, 1, 2, 1, 1, 3
Offset: 1

Views

Author

Antti Karttunen, Jun 02 2024

Keywords

Comments

As A001414 and A064097 are both fully additive sequences, all sequences that give the positions of multiples of some k > 1 in this sequence are closed under multiplication.

Crossrefs

Programs

A373366 a(n) = gcd(A064097(n), A083345(n)).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 2, 1, 1, 1, 5, 7, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 7, 1, 1, 8, 1, 2, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 9, 1, 1, 1, 4, 1, 1, 1, 2, 9, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Jun 02 2024

Keywords

Crossrefs

Cf. also A373363, A373365.

Programs

A334202 a(n) = A064097(n) - A323077(n).

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 4, 1, 2, 3, 5, 2, 5, 4, 3, 1, 5, 2, 6, 3, 4, 5, 7, 2, 3, 5, 2, 4, 7, 3, 7, 1, 5, 5, 4, 2, 7, 6, 5, 3, 7, 4, 8, 5, 3, 7, 9, 2, 4, 3, 5, 5, 8, 2, 5, 4, 6, 7, 9, 3, 8, 7, 4, 1, 5, 5, 9, 5, 7, 4, 9, 2, 8, 7, 3, 6, 5, 5, 9, 3, 2, 7, 9, 4, 5, 8, 7, 5, 9, 3, 5, 7, 7, 9, 6, 2, 8, 4, 5, 3, 9, 5, 9, 5, 4
Offset: 1

Views

Author

Antti Karttunen, May 11 2020

Keywords

Comments

a(A122111(n)) differs from A001222(n) for the first time at n=64.

Crossrefs

Programs

Formula

a(n) = A064097(n) - A323077(n).
a(n) = A064097(A006530(n)).

A334203 a(n) = A064097(A032742(n)).

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 2, 2, 3, 0, 3, 0, 4, 3, 3, 0, 4, 0, 4, 4, 5, 0, 4, 3, 5, 4, 5, 0, 5, 0, 4, 5, 5, 4, 5, 0, 6, 5, 5, 0, 6, 0, 6, 5, 7, 0, 5, 4, 6, 5, 6, 0, 6, 5, 6, 6, 7, 0, 6, 0, 7, 6, 5, 5, 7, 0, 6, 7, 7, 0, 6, 0, 7, 6, 7, 5, 7, 0, 6, 6, 7, 0, 7, 5, 8, 7, 7, 0, 7, 5, 8, 7, 9, 6, 6, 0, 8, 7, 7, 0, 7, 0, 7, 7
Offset: 1

Views

Author

Antti Karttunen, May 13 2020

Keywords

Crossrefs

Programs

Formula

a(n) = A064097(A032742(n)) = A064097(n/A020639(n)).
Showing 1-10 of 47 results. Next