cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A005245 The (Mahler-Popken) complexity of n: minimal number of 1's required to build n using + and *.

Original entry on oeis.org

1, 2, 3, 4, 5, 5, 6, 6, 6, 7, 8, 7, 8, 8, 8, 8, 9, 8, 9, 9, 9, 10, 11, 9, 10, 10, 9, 10, 11, 10, 11, 10, 11, 11, 11, 10, 11, 11, 11, 11, 12, 11, 12, 12, 11, 12, 13, 11, 12, 12, 12, 12, 13, 11, 12, 12, 12, 13, 14, 12, 13, 13, 12, 12, 13, 13, 14, 13, 14, 13, 14, 12, 13, 13, 13, 13, 14, 13, 14
Offset: 1

Views

Author

Keywords

Comments

The complexity of an integer n is the least number of 1's needed to represent it using only additions, multiplications and parentheses. This does not allow juxtaposition of 1's to form larger integers, so for example, 2 = 1+1 has complexity 2, but 11 does not ("pasting together" two 1's is not an allowed operation).
The complexity of a number has been defined in several different ways by different authors. See the Index to the OEIS for other definitions.
Guy asks if a(p) = a(p-1) + 1 for prime p. Martin Fuller found the least counterexample p = 353942783 in 2008, see Fuller link. - Charles R Greathouse IV, Oct 04 2012
It appears that this sequence is lower than A348262 {1,+,^} only a finite number of times. - Gordon Hamilton and Brad Ballinger, May 23 2022
The second Altman links proves that {a(n) - 3*log_3(n)} is a well-ordered subset of the reals whose intersection with [0,k) has order type omega^k for each positive integer k, so this set itself has order type omega^omega. - Jianing Song, Apr 13 2024

Examples

			From _Lekraj Beedassy_, Jul 04 2009: (Start)
   n.........minimal expression........ a(n) = number of 1's
   1..................1...................1
   2.................1+1..................2
   3................1+1+1.................3
   4.............(1+1)*(1+1)..............4
   5............(1+1)*(1+1)+1.............5
   6............(1+1)*(1+1+1).............5
   7...........(1+1)*(1+1+1)+1............6
   8..........(1+1)*(1+1)*(1+1)...........6
   9...........(1+1+1)*(1+1+1)............6
  10..........(1+1+1)*(1+1+1)+1...........7
  11.........(1+1+1)*(1+1+1)+1+1..........8
  12.........(1+1)*(1+1)*(1+1+1)..........7
  13........(1+1)*(1+1)*(1+1+1)+1.........8
  14.......{(1+1)*(1+1+1)+1}*(1+1)........8
  15.......{(1+1)*(1+1)+1}*(1+1+1)........8
  16.......(1+1)*(1+1)*(1+1)*(1+1)........8
  17......(1+1)*(1+1)*(1+1)*(1+1)+1.......9
  18........(1+1)*(1+1+1)*(1+1+1).........8
  19.......(1+1)*(1+1+1)*(1+1+1)+1........9
  20......{(1+1+1)*(1+1+1)+1}*(1+1).......9
  21......{(1+1)*(1+1+1)+1}*(1+1+1).......9
  22.....{(1+1)*(1+1+1)+1}*(1+1+1)+1.....10
  23....{(1+1)*(1+1+1)+1}*(1+1+1)+1+1....11
  24......(1+1)*(1+1)*(1+1)*(1+1+1).......9
  25.....(1+1)*(1+1)*(1+1)*(1+1+1)+1.....10
  26....{(1+1)*(1+1)*(1+1+1)+1}*(1+1)....10
  27.......(1+1+1)*(1+1+1)*(1+1+1)........9
  28......(1+1+1)*(1+1+1)*(1+1+1)+1......10
  29.....(1+1+1)*(1+1+1)*(1+1+1)+1+1.....11
  30.....{(1+1+1)*(1+1+1)+1}*(1+1+1).....10
  31....{(1+1+1)*(1+1+1)+1}*(1+1+1)+1....11
  32....(1+1)*(1+1)*(1+1)*(1+1)*(1+1)....10
  33...(1+1)*(1+1)*(1+1)*(1+1)*(1+1)+1...11
  34..{(1+1)*(1+1)*(1+1)*(1+1)+1}*(1+1)..11
  .........................................
(End)
		

References

  • M. Criton, "Les uns de Germain", Problem No. 4, pp. 13 ; 68 in '7 x 7 Enigmes Et Défis Mathématiques pour tous', vol. 25, Editions POLE, Paris 2001.
  • R. K. Guy, Unsolved Problems in Number Theory, Sect. F26.
  • K. Mahler and J. Popken, Over een Maximumprobleem uit de Rekenkunde (Dutch: On a maximum problem in arithmetic), Nieuw Arch. Wiskunde, (3) 1 (1953), pp. 1-15.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A025280 (variant using +, *, and ^), A091333 (using +, -, and *), A091334 (using +, -, *, and ^), A348089 (using +, -, *, / and ^), A348262 (using + and ^).
Cf. A000792 (largest integer of given complexity), A003313, A076142, A076091, A061373, A005421, A064097, A005520, A003037, A161906, A161908, A244743.

Programs

  • Haskell
    import Data.List (genericIndex)
    a005245 n = a005245_list `genericIndex` (n-1)
    a005245_list = 1 : f 2 [1] where
       f x ys = y : f (x + 1) (y : ys) where
         y = minimum $
             (zipWith (+) (take (x `div` 2) ys) (reverse ys)) ++
             (zipWith (+) (map a005245 $ tail $ a161906_row x)
                          (map a005245 $ reverse $ init $ a161908_row x))
    -- Reinhard Zumkeller, Mar 08 2013
    
  • Maple
    with(numtheory):
    a:= proc(n) option remember;
          `if`(n=1, 1, min(seq(a(i)+a(n-i), i=1..n/2),
           seq(a(d)+a(n/d), d=divisors(n) minus {1, n})))
        end:
    seq(a(n), n=1..100); # Alois P. Heinz, Apr 18 2012
  • Mathematica
    a[n_] := a[n] = If[n == 1, 1,
       Min[Table[a[i] + a[n-i], {i, 1, n/2}] ~Join~
       Table[a[d] + a[n/d], {d, Divisors[n] ~Complement~ {1, n}}]]];
    Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Dec 12 2013, after Alois P. Heinz *)
  • PARI
    A005245(n /* start by calling this with the largest needed n */, lim/* see below */) = { local(d); n<6 && return(n);
    if(n<=#A005245, A005245[n]&return(A005245[n]) /* return memoized result if available */,
    A005245=vector(n) /* create vector if needed - should better reuse existing data if available */);
    for(i=1, n-1, A005245[i] || A005245[i]=A005245(i,lim)); /* compute all previous elements */
    A005245[n]=min( vecmin(vector(min(n\2,if(lim>0,lim,n)), k, A005245[k]+A005245[n-k])) /* additive possibilities - if lim>0 is given, consider a(k)+a(n-k) only for k<=lim - we know it is save to use lim=1 up to n=2e7 */, if( isprime(n), n, vecmin(vector((-1+#d=divisors(n))\2, i, A005245[d[i+1]]+A005245[d[ #d-i]]))/* multiplicative possibilities */))}
    \\ See also the Python program by Tim Peters at A005421.
    \\ M. F. Hasler, Jan 30 2008
    
  • Python
    from functools import lru_cache
    from itertools import takewhile
    from sympy import divisors
    @lru_cache(maxsize=None)
    def A005245(n): return min(min(A005245(a)+A005245(n-a) for a in range(1,(n>>1)+1)),min((A005245(d)+A005245(n//d) for d in takewhile(lambda d:d*d<=n,divisors(n)) if d>1),default=n)) if n>1 else 1 # Chai Wah Wu, Apr 29 2023

Formula

It is known that a(n) <= A061373(n) but I think 0 <= A061373(n) - a(n) <= 1 also holds. - Benoit Cloitre, Nov 23 2003 [That's false: the numbers {46, 235, 649, 1081, 7849, 31669, 61993} require {1, 2, 3, 4, 5, 6, 7} fewer 1's in A005245 than in A061373. - Ed Pegg Jr, Apr 13 2004]
It is known from the work of Selfridge and Coppersmith that 3 log_3 n <= a(n) <= 3 log_2 n = 4.754... log_3 n for all n > 1. [Guy, Unsolved Problems in Number Theory, Sect. F26.] - Charles R Greathouse IV, Apr 19 2012 [Comment revised by N. J. A. Sloane, Jul 17 2016]
Zelinsky (2022) improves the upper bound to a(n) <= A*log n where A = 41/log(55296) = 3.754422.... This compares to the constant 2.7307176... of the lower bound. - Charles R Greathouse IV, Dec 11 2022
a(n) >= A007600(n) is a very accurate lower bound. - Mehmet Sarraç, Dec 18 2022

Extensions

More terms from David W. Wilson, May 15 1997

A064097 A quasi-logarithm defined inductively by a(1) = 0 and a(p) = 1 + a(p-1) if p is prime and a(n*m) = a(n) + a(m) if m,n > 1.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 4, 3, 4, 4, 5, 4, 5, 5, 5, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 6, 6, 7, 6, 7, 5, 7, 6, 7, 6, 7, 7, 7, 6, 7, 7, 8, 7, 7, 8, 9, 6, 8, 7, 7, 7, 8, 7, 8, 7, 8, 8, 9, 7, 8, 8, 8, 6, 8, 8, 9, 7, 9, 8, 9, 7, 8, 8, 8, 8, 9, 8, 9, 7, 8, 8, 9, 8, 8, 9, 9, 8, 9, 8, 9, 9, 9, 10, 9, 7, 8, 9, 9, 8, 9, 8, 9, 8
Offset: 1

Views

Author

Thomas Schulze (jazariel(AT)tiscalenet.it), Sep 16 2001

Keywords

Comments

Note that this is the logarithm of a completely multiplicative function. - Michael Somos
Number of iterations of r -> r - (largest divisor d < r) needed to reach 1 starting at r = n. a(n) = a(n - A032742(n)) + 1 for n >= 2. - Jaroslav Krizek, Jan 28 2010
From Antti Karttunen, Apr 04 2020: (Start)
Krizek's comment above stems from the fact that n - n/p = (p-1)*(n/p), where p is the least prime dividing n [= A020639(n), thus n/p = A032742(n)] and because this is fully additive sequence we can write a(n) = a(p) + a(n/p) = (1+a(p-1)) + a(n/p) = 1 + a((p-1)*(n/p)) = 1 + a(n - n/p), for any composite n.
Note that in above formula p can be any prime factor of n, not only the smallest, which proves Robert G. Wilson v's comment in A333123 that all such iteration paths from n to 1 are of the same length, regardless of the route taken.
(End)
From Antti Karttunen, May 11 2020: (Start)
Moreover, those paths form the chains of a graded poset, which is also a lattice. See the Mathematics Stack Exchange link.
Keeping the formula otherwise same, but changing it for primes either as a(p) = 1 + a(A064989(p)), a(p) = 1 + a(floor(p/2)) or a(p) = 1 + a(A048673(p)) gives sequences A056239, A064415 and A334200 respectively.
(End)
a(n) is the number of iterations r->A060681(r) to reach 1 starting at r=n. - R. J. Mathar, Nov 06 2023

Examples

			a(19) = 6: 19 - 1 = 18; 18 - 9 = 9; 9 - 3 = 6; 6 - 3 = 3; 3 - 1 = 2; 2 - 1 = 1. That is a total of 6 iterations. - _Jaroslav Krizek_, Jan 28 2010
From _Antti Karttunen_, Apr 04 2020: (Start)
We can follow also alternative routes, where we do not always select the largest proper divisor to subtract, for example, from 19 to 1, we could go as:
19-1 = 18; 18-(18/3) = 12; 12-(12/2) = 6; 6-(6/3) = 4; 4-(4/2) = 2; 2-(2/2) = 1, or as
19-1 = 18; 18-(18/3) = 12; 12-(12/3) = 8; 8-(8/2) = 4; 4-(4/2) = 2; 2-(2/2) = 1,
both of which also have exactly 6 iterations.
(End)
		

Crossrefs

Similar to A061373 which uses the same recurrence relation but a(1) = 1.
Cf. A000079 (position of last occurrence), A105017 (position of records), A334197 (positions of record jumps upward).
Partial sums of A334090.
Cf. also A056239.

Programs

  • Haskell
    import Data.List (genericIndex)
    a064097 n = genericIndex a064097_list (n-1)
    a064097_list = 0 : f 2 where
       f x | x == spf  = 1 + a064097 (spf - 1) : f (x + 1)
           | otherwise = a064097 spf + a064097 (x `div` spf) : f (x + 1)
           where spf = a020639 x
    -- Reinhard Zumkeller, Mar 08 2013
    
  • Maple
    a:= proc(n) option remember;
          add((1+a(i[1]-1))*i[2], i=ifactors(n)[2])
        end:
    seq(a(n), n=1..120);  # Alois P. Heinz, Apr 26 2019
    # alternative which can be even used outside this entry
    A064097 := proc(n)
            option remember ;
            add((1+procname(i[1]-1))*i[2], i=ifactors(n)[2]) ;
    end proc:
    seq(A064097(n),n=1..100) ; # R. J. Mathar, Aug 07 2022
  • Mathematica
    quasiLog := (Length@NestWhileList[# - Divisors[#][[-2]] &, #, # > 1 &] - 1) &;
    quasiLog /@ Range[1024]
    (* Terentyev Oleg, Jul 17 2011 *)
    fi[n_] := Flatten[ Table[#[[1]], {#[[2]]}] & /@ FactorInteger@ n]; a[1] = 0; a[n_] := If[ PrimeQ@ n, a[n - 1] + 1, Plus @@ (a@# & /@ fi@ n)]; Array[a, 105] (* Robert G. Wilson v, Jul 17 2013 *)
    a[n_] := Length@ NestWhileList[# - #/FactorInteger[#][[1, 1]] &, n, # != 1 &] - 1; Array[a, 100] (* or *)
    a[n_] := a[n - n/FactorInteger[n][[1, 1]]] +1; a[1] = 0; Array[a, 100]  (* Robert G. Wilson v, Mar 03 2020 *)
  • PARI
    NN=200; an=vector(NN);
    a(n)=an[n];
    for(n=2,NN,an[n]=if(isprime(n),1+a(n-1), sumdiv(n,p, if(isprime(p),a(p)*valuation(n,p)))));
    for(n=1,100,print1(a(n)", "))
    
  • PARI
    a(n)=if(isprime(n), return(a(n-1)+1)); if(n==1, return(0)); my(f=factor(n)); apply(a,f[,1])~ * f[,2] \\ Charles R Greathouse IV, May 10 2016
    
  • Scheme
    (define (A064097 n) (if (= 1 n) 0 (+ 1 (A064097 (A060681 n))))) ;; After Jaroslav Krizek's Jan 28 2010 formula.
    (define (A060681 n) (- n (A032742 n))) ;; See also code under A032742.
    ;; Antti Karttunen, Aug 23 2017

Formula

Conjectures: for n>1, log(n) < a(n) < (5/2)*log(n); lim n ->infinity sum(k=1, n, a(k))/(n*log(n)-n) = C = 1.8(4)... - Benoit Cloitre, Oct 30 2002
Conjecture: for n>1, floor(log_2(n)) <= a(n) < (5/2)*log(n). - Robert G. Wilson v, Aug 10 2013
a(n) = Sum_{k=1..n} a(p_k)*e_k if n is composite with factorization p_1^e_1 * ... * p_k^e_k. - Orson R. L. Peters, May 10 2016
From Antti Karttunen, Aug 23 2017: (Start)
a(1) = 0; for n > 1, a(n) = 1 + a(A060681(n)). [From Jaroslav Krizek's Jan 28 2010 formula in comments.]
a(n) = A073933(n) - 1. (End)
a(n) = A064415(n) + A329697(n) [= A054725(n) + A329697(n), for n > 1]. - Antti Karttunen, Apr 16 2020
a(n) = A323077(n) + A334202(n) = a(A052126(n)) + a(A006530(n)). - Antti Karttunen, May 12 2020

Extensions

More terms from Michael Somos, Sep 25 2001

A182002 Smallest positive integer that cannot be computed using exactly n n's, the four basic arithmetic operations (+, -, *, /), and the parentheses.

Original entry on oeis.org

2, 2, 1, 10, 13, 22, 38, 91, 195, 443, 634, 1121, 3448, 6793, 17692
Offset: 1

Views

Author

Ali Dasdan, Apr 05 2012

Keywords

Examples

			a(2) = 2 because two 2's can produce 0 = 2-2, 1 = 2/2, 4 = 2+2 = 2*2, so the smallest positive integer that cannot be computed is 2.
a(3) = 1 because no expression with three 3's gives 1.
		

Crossrefs

Programs

  • Maple
    f:= proc(n,b) option remember;
          `if`(n=1, {b}, {seq(seq(seq([k+m, k-m, k*m,
          `if`(m=0, NULL, k/m)][], m=f(n-i, b)), k=f(i, b)), i=1..n-1)})
        end:
    a:= proc(n) local i, l;
          l:= sort([infinity, select(x-> is(x, integer) and x>0, f(n, n))[]]);
          for i do if l[i]<>i then return i fi od
        end:
    seq(a(n), n=1..8); # Alois P. Heinz, Apr 13 2012
  • Python
    from fractions import Fraction
    from functools import lru_cache
    def a(n):
        @lru_cache()
        def f(m):
            if m == 1: return {Fraction(n, 1)}
            out = set()
            for j in range(1, m//2+1):
                for x in f(j):
                    for y in f(m-j):
                        out.update([x + y, x - y, y - x, x * y])
                        if y: out.add(Fraction(x, y))
                        if x: out.add(Fraction(y, x))
            return out
        k, s = 1, f(n)
        while k in s: k += 1
        return k
    print([a(n) for n in range(1, 10)]) # Michael S. Branicky, Jul 29 2022

Extensions

a(11)-a(12) from Alois P. Heinz, Apr 22 2012
a(13)-a(14) from Michael S. Branicky, Jul 29 2022
a(15) from Michael S. Branicky, Jul 27 2023

A076091 Numbers n such that A064097(n) - A003313(n) = 1.

Original entry on oeis.org

23, 33, 43, 46, 47, 49, 59, 65, 66, 67, 69, 77, 83, 86, 92, 94, 98, 99, 107, 115, 118, 121, 130, 131, 132, 133, 134, 138, 139, 141, 145, 147, 149, 154, 163, 165, 166, 167, 172, 173, 177, 179, 184, 188, 195, 196, 197, 198, 199, 201, 203, 207, 209
Offset: 1

Views

Author

Benoit Cloitre, Oct 31 2002

Keywords

Crossrefs

Extensions

Corrected and extended by Hugo Pfoertner, Feb 17 2006

A117618 Least number with complexity height of n, under integer complexity A005245.

Original entry on oeis.org

1, 6, 7, 10, 22, 683
Offset: 1

Views

Author

Jonathan Vos Post, Apr 07 2006

Keywords

Comments

Consider the recursion: A005245(n), A005245(A005245(n)), A005245(A005245(A005245(n))), ... which we know is finite before reaching a fixed point, as A005245(n) <= n. The number of steps needed to reach such a fixed point is the complexity height of n (with respect to the A005245 measure of complexity, there being others in the OEIS).
a(7) >= 872573642639 = A005520(89). - David A. Corneth, May 06 2024

Examples

			a(1) = 1 because the A005245 complexity of 1 is 1, already giving a fixed point.
a(2) = 6 because it is the smallest x such that A005245(x) =/= x and A005245(x) = A005245(A005245(x)).
a(3) = 7 because 7 is the least number x with complexity 6, thus taking a further step of recursion to reach a fixed point.
a(4) = 10 because 10 is the least number with complexity 7.
a(5) = 22 because 22 is the least number with complexity 10.
a(6) = 683 because 683 is the least number with complexity 22.
a(7) = the least number with complexity 683.
		

References

  • W. A. Beyer, M. L. Stein and S. M. Ulam, The Notion of Complexity. Report LA-4822, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, December 1971.
  • R. K. Guy, Unsolved Problems in Number Theory, Sect. F26.

Crossrefs

Formula

a(n) = least k such that A005245^(n)(k) = A005245^(n-1)(k) but (if n>1) A005245^(n-1)(k) != A005245^(n-2)(k), where ^ denotes repeated application.
For n >= 3, a(n) = A005520(a(n-1)). - Max Alekseyev, May 06 2024

Extensions

a(2)=6 inserted by Giovanni Resta, Jun 15 2016
Edited by Max Alekseyev, May 06 2024

A117632 Number of 1's required to build n using {+,T} and parentheses, where T(i) = i*(i+1)/2.

Original entry on oeis.org

1, 2, 2, 3, 4, 2, 3, 4, 4, 3, 4, 4, 5, 6, 4, 5, 6, 6, 7, 6, 2, 3, 4, 4, 5, 6, 4, 3, 4, 5, 5, 6, 6, 5, 6, 4, 5, 6, 6, 7, 8, 4, 5, 6, 4, 5, 6, 6, 5, 6, 6, 7, 8, 8, 3, 4, 5, 5, 6, 7, 5, 6, 6, 7, 6, 4, 5, 6, 6, 7, 8, 6, 7, 8, 8, 5, 6, 4, 5, 6, 6, 7, 6, 6, 7, 8, 6, 7, 8, 8, 5, 6, 7, 7, 8, 9, 7, 8, 6, 7, 8, 8
Offset: 1

Views

Author

Jonathan Vos Post, Apr 08 2006

Keywords

Comments

This problem has the optimal substructure property.

Examples

			a(1) = 1 because "1" has a single 1.
a(2) = 2 because "1+1" has two 1's.
a(3) = 2 because 3 = T(1+1) has two 1's.
a(6) = 2 because 6 = T(T(1+1)).
a(10) = 3 because 10 = T(T(1+1)+1).
a(12) = 4 because 12 = T(T(1+1)) + T(T(1+1)).
a(15) = 4 because 15 = T(T(1+1)+1+1).
a(21) = 2 because 21 = T(T(T(1+1))).
a(28) = 3 because 28 = T(T(T(1+1))+1).
a(55) = 3 because 55 = T(T(T(1+1)+1)).
		

References

  • W. A. Beyer, M. L. Stein and S. M. Ulam, The Notion of Complexity. Report LA-4822, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, 1971.
  • R. K. Guy, Unsolved Problems Number Theory, Sect. F26.

Crossrefs

See also A023361 = number of compositions into sums of triangular numbers, A053614 = numbers that are not the sum of triangular numbers. Iterated triangular numbers: A050536, A050542, A050548, A050909, A007501.

Programs

  • Maple
    a:= proc(n) option remember; local m; m:= floor (sqrt (n*2));
          if n<3 then n
        elif n=m*(m+1)/2 then a(m)
        else min (seq (a(i)+a(n-i), i=1..floor(n/2)))
          fi
        end:
    seq (a(n), n=1..110);  # Alois P. Heinz, Jan 05 2011
  • Mathematica
    a[n_] := a[n] = Module[{m = Floor[Sqrt[n*2]]}, If[n < 3, n, If[n == m*(m + 1)/2, a[m], Min[Table[a[i] + a[n - i], {i, 1, Floor[n/2]}]]]]];
    Array[a, 110] (* Jean-François Alcover, Jun 02 2018, from Maple *)

Extensions

I do not know how many of these entries have been proved to be minimal. - N. J. A. Sloane, Apr 15 2006
Corrected and extended by Alois P. Heinz, Jan 05 2011

A104233 Positive integers which have a "compact" representation using fewer decimal digits than just writing the number normally.

Original entry on oeis.org

125, 128, 216, 243, 256, 343, 512, 625, 729, 1000, 1015, 1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1024, 1025, 1026, 1027, 1028, 1029, 1030, 1031, 1032, 1033, 1080, 1089, 1125, 1152, 1156, 1215, 1225, 1250, 1280, 1287, 1288, 1289, 1290, 1291, 1292, 1293, 1294
Offset: 1

Views

Author

Jack Brennen, Apr 01 2005

Keywords

Comments

You are allowed to use the following symbols as well:
( ) grouping
+ addition
- subtraction
* multiplication
/ division
^ exponentiation
Note that 1015 to 1033 are all representable in the form 4^5-d or 4^5+d, where d is a single digit.
The complexity of a number has been defined in several different ways by different authors. See the Index to the OEIS for other definitions. - Jonathan Vos Post, Apr 02 2005
From Bernard Schott, Feb 10 2021: (Start)
These numbers are called "entiers compressibles" in French.
There are no 1-digit or 2-digit terms.
The 3-digit terms are all of the form m^q, with 2 <= m, q <= 9.
The 4-digit terms are of the form m^q with m, q > 1, or of the form m^q+-d or m^q*r with m, q, r > 1, d >= 0, and m, q, r, d are all digits (see examples where [...] is a corresponding "compact" representation). (End)

Examples

			From _Bernard Schott_, Feb 10 2021: (Start)
a(1) = 125 = [5^3] = 5*5*5 is the smallest cube.
a(5) = 256 = [2^8] = [4^4] = 16*16 is the smallest square.
a(6) = 343 = [7^3] is the smallest palindrome.
a(15) = 1019 = [4^5-5] is the smallest prime.
6555 = [3^8-5] = [35^2] = T(49) = 49*50/2 is the smallest triangular number.
362880 = 9! = [70*72^2] = [8*(6^6-6^4)] is the smallest factorial.
The smallest zeroless pandigital number 123456789 = [(10^10-91)/81] = [3*(6415^2+38)] is a term. (End)
The largest pandigital number 9876543210 = [(8*10^11+10)/81] = [(8*10^11+10)/9^2] = [5*(15^5+67)*51^2] is also a term. - _Bernard Schott_, Apr 20 2022
		

References

  • R. K. Guy, Unsolved Problems Number Theory, Sect. F26.

Crossrefs

Extensions

More terms from Bernard Schott, Feb 10 2021
Missing terms added by David A. Corneth, Feb 14 2021
Showing 1-7 of 7 results.