A064526
Define a pair of sequences by p(0) = 0, q(0) = p(1) = q(1) = 1, q(n+1) = p(n)*q(n-1), p(n+1) = q(n+1) + q(n) for n > 0; then a(n) = p(n) and A064183(n) = q(n).
Original entry on oeis.org
0, 1, 2, 3, 5, 13, 49, 529, 21121, 10369921, 213952189441, 2214253468601687041, 473721461635593679669210030081, 1048939288228833101089604217183056027094304481281
Offset: 0
See
A236394 for the primes that are produced.
-
Flatten[{0,1, RecurrenceTable[{a[n]==(a[n-1]^2 + a[n-2]^2 - a[n-1]*a[n-2] * (1+a[n-2]))/(1-a[n-2]), a[2]==2, a[3]==3},a,{n,2,15}]}] (* Vaclav Kotesovec, May 21 2015 *)
-
{a(n) = local(v); if( n<3, max(0, n), v = [1,1]; for( k=3, n, v = [v[2], v[1] * (v[1] + v[2])]); v[1] + v[2])}
-
{a(n) = if( n<4, max(0, n), (a(n-1)^2 + a(n-2)^2 - a(n-1) * a(n-2) * (1 + a(n-2))) / (1 - a(n-2)))}
A070231
Let u(k), v(k), w(k) satisfy the recursions u(1) = v(1) = w(1) = 1, u(k+1) = u(k) + v(k) + w(k), v(k+1) = u(k)*v(k) + v(k)*w(k) + w(k)*u(k), and w(k+1) = u(k)*v(k)*w(k) for k >= 1; then a(n) = u(n).
Original entry on oeis.org
1, 3, 7, 31, 1279, 9202687, 3692849258577919, 98367959484921734629696721986125823, 3882894052327310957045599009145809243674851356642054390303168725061781159935999
Offset: 1
-
a[1] = 1; v[1] = 1; w[1] = 1; a[k_] := a[k] = a[k - 1] + v[k - 1] + w[k - 1]; v[k_] := v[k] = a[k - 1]*v[k - 1] + v[k - 1]*w[k - 1] + w[k - 1]*a[k - 1]; w[k_] := w[k] = a[k - 1]*v[k - 1]*w[k - 1]; Table[a[n], {n, 1, 9}] (* Vaclav Kotesovec, May 11 2020 *)
-
lista(nn) = {my(u = vector(nn)); my(v = vector(nn)); my(w = vector(nn)); u[1] = 1; v[1] = 1; w[1] = 1; for (n=2, nn, u[n] = u[n-1] + v[n-1] + w[n-1]; v[n] = u[n-1]*v[n-1] + v[n-1]*w[n-1] + w[n-1]*u[n-1]; w[n] = u[n-1]*v[n-1]*w[n-1];); u; } \\ Petros Hadjicostas, May 11 2020
A070233
Let u(k), v(k), w(k) satisfy the recursions u(1) = v(1) = w(1) = 1, u(k+1) = u(k) + v(k) + w(k), v(k+1) = u(k)*v(k) + v(k)*w(k) + w(k)*u(k), and w(k+1) = u(k)*v(k)*w(k) for k >= 1; then a(n) = w(n).
Original entry on oeis.org
1, 1, 9, 945, 8876385, 3689952451492545, 98367948795841301790914258556831105, 3882894052327309905582682317031276840071039865528864289025562807872336355445505
Offset: 1
-
u[1] = 1; v[1] = 1; a[1] = 1; u[k_] := u[k] = u[k - 1] + v[k - 1] + a[k - 1]; v[k_] := v[k] = u[k - 1]*v[k - 1] + v[k - 1]*a[k - 1] + a[k - 1]*u[k - 1]; a[k_] := a[k] = u[k - 1]*v[k - 1]*a[k - 1]; Table[a[n], {n, 1, 9}] (* Vaclav Kotesovec, May 11 2020 *)
-
lista(nn) = {my(u = vector(nn)); my(v = vector(nn)); my(w = vector(nn)); u[1] = 1; v[1] = 1; w[1] = 1; for (n=2, nn, u[n] = u[n-1] + v[n-1] + w[n-1]; v[n] = u[n-1]*v[n-1] + v[n-1]*w[n-1] + w[n-1]*u[n-1]; w[n] = u[n-1]*v[n-1]*w[n-1]; ); w; } \\ Petros Hadjicostas, May 11 2020
A070234
Let u(k), v(k), w(k) satisfy the recursions u(1) = v(1) = w(1) = 1, u(k+1) = u(k) + v(k) + w(k), v(k+1) = u(k)*v(k) + v(k)*w(k) + w(k)*u(k), and w(k+1) = u(k)*v(k)*w(k); then a(n) = v(n).
Original entry on oeis.org
1, 3, 15, 303, 325023, 2896797882687, 10689080432835089614170716799, 1051462916692114532403603811392745230616355871287492722818364671
Offset: 1
A094303
a(1) = 1, a(2) = 2, and a(n+1) = a(n) * sum of all previous terms up to a(n-1) for n >= 2.
Original entry on oeis.org
1, 2, 2, 6, 30, 330, 13530, 5019630, 69777876630, 351229105131280530, 24509789089304573335878465330, 8608552999157278550998626549630446732052243030
Offset: 1
-
nxt[{t1_,t2_,a_}]:=Module[{c=t1*a},{t1+t2,c,c}]; Join[{1},NestList[nxt,{1,2,2},10][[All,2]]] (* Harvey P. Dale, Aug 30 2020 *)
-
lista(nn) = { my(va = vector(nn)); va[1] = 1; va[2] = 2; for(n=3, nn, va[n] = va[n-1]*sum(k=1, n-2, va[k]);); va; } \\ Petros Hadjicostas, May 11 2020
A236394
Primes produced by A064526, in order of appearance.
Original entry on oeis.org
2, 3, 5, 13, 7, 23, 21121, 853, 12157, 213952189441, 31, 71427531245215711, 17, 163, 68743, 28031803, 88717035481559, 4549, 38197, 3835420378661, 1573954557128833179852821957
Offset: 1
A126023
a(0)=0, a(1)=1; for n>1, a(n) = a(n-1)*(a(n-1)+a(n-2)).
Original entry on oeis.org
0, 1, 1, 2, 6, 48, 2592, 6842880, 46842743439360, 2194242933464976548324966400, 4814702051061088283920560140388303599459408453566464000, 23181355840491850372772514246989811472332466216882815765831029699284672633019505150499832539732598430105600000
Offset: 0
-
a=0;b=1;lst={a,b};Do[c=(a+b)*b;AppendTo[lst,c];a=b;b=c,{n,2*3!}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 05 2009 *)
RecurrenceTable[{a[0]==0, a[1]==1, a[n] == a[n-1]*(a[n-1]+a[n-2])}, a, {n, 0, 10}] (* Vaclav Kotesovec, Dec 18 2014 *)
-
a=0;b=1;vector(11,i,c=b*(b+a);a=b;b=c;a)
Showing 1-7 of 7 results.
Comments