A003686
Number of genealogical 1-2 rooted trees of height n.
Original entry on oeis.org
1, 2, 3, 5, 11, 41, 371, 13901, 5033531, 69782910161, 351229174914190691, 24509789089655802510792656021, 8608552999157278575508415639286249242844899051
Offset: 1
- D. Parisse, The Tower of Hanoi and the Stern-Brocot Array, Thesis, Munich, 1997.
-
I:=[1,2]; [n le 2 select I[n] else Self(n-1)+Self(n-2)*(Self(n-1)-Self(n-2)): n in [1..14]]; // Vincenzo Librandi, Jul 19 2016
-
RecurrenceTable[{a[1]==1, a[2]==2, a[n]==a[n-1]+a[n-2](a[n-1]-a[n-2])}, a[n],{n,15}] (* Harvey P. Dale, Jul 27 2011 *)
Re[NestList[Re@#+(1+I Re@#)Im@#&, 1+I, 15]] (* Vladimir Reshetnikov, Jul 18 2016 *)
-
a(n) = local(an); if(n<1, 0, an=vector(max(2,n)); an[1]=1; an[2]=2; for(k=3, n, an[k]=an[k-1] - an[k-2]^2 + an[k-1]*an[k-2]); an[n])
A064526
Define a pair of sequences by p(0) = 0, q(0) = p(1) = q(1) = 1, q(n+1) = p(n)*q(n-1), p(n+1) = q(n+1) + q(n) for n > 0; then a(n) = p(n) and A064183(n) = q(n).
Original entry on oeis.org
0, 1, 2, 3, 5, 13, 49, 529, 21121, 10369921, 213952189441, 2214253468601687041, 473721461635593679669210030081, 1048939288228833101089604217183056027094304481281
Offset: 0
See
A236394 for the primes that are produced.
-
Flatten[{0,1, RecurrenceTable[{a[n]==(a[n-1]^2 + a[n-2]^2 - a[n-1]*a[n-2] * (1+a[n-2]))/(1-a[n-2]), a[2]==2, a[3]==3},a,{n,2,15}]}] (* Vaclav Kotesovec, May 21 2015 *)
-
{a(n) = local(v); if( n<3, max(0, n), v = [1,1]; for( k=3, n, v = [v[2], v[1] * (v[1] + v[2])]); v[1] + v[2])}
-
{a(n) = if( n<4, max(0, n), (a(n-1)^2 + a(n-2)^2 - a(n-1) * a(n-2) * (1 + a(n-2))) / (1 - a(n-2)))}
A064847
Sequence a(n) such that there is a sequence b(n) with a(1) = b(1) = 1, a(n+1) = a(n) * b(n) and b(n+1) = a(n) + b(n) for n >= 1.
Original entry on oeis.org
1, 1, 2, 6, 30, 330, 13530, 5019630, 69777876630, 351229105131280530, 24509789089304573335878465330, 8608552999157278550998626549630446732052243030
Offset: 1
-
a064847 n = a064847_list !! (n-1)
a064847_list = 1 : f [1,1] where
f xs'@(x:xs) = y : f (y : xs') where y = x * sum xs
-- Reinhard Zumkeller, Apr 29 2013
-
[n le 2 select 1 else Self(n-1)*(Self(n-1)/Self(n-2) + Self(n-2)): n in [1..14]]; // Vincenzo Librandi, Dec 17 2015
-
f:= proc(n) option remember; procname(n-1)*(procname(n-1)/procname(n-2) + procname(n-2)) end proc:
f(1):= 1: f(2):= 1:
map(f, [$1..16]); # Robert Israel, Jul 18 2016
-
RecurrenceTable[{a[n]==a[n-1]*(a[n-1]/a[n-2] + a[n-2]), a[0]==1, a[1]==1},a,{n,0,15}] (* Vaclav Kotesovec, May 21 2015 *)
Im[NestList[Re@#+(1+I Re@#)Im@#&, 1+I, 15]] (* Vladimir Reshetnikov, Jul 18 2016 *)
-
{ for (n=1, 18, if (n>2, a=a1*(a1/a2 + a2); a2=a1; a1=a, a=a1=a2=1); write("b064847.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 28 2009
-
def A064847():
x, y = 1, 2
yield x
while True:
yield x
x, y = x * y, x + y
a = A064847()
[next(a) for i in range(12)] # Peter Luschny, Dec 17 2015
A070231
Let u(k), v(k), w(k) satisfy the recursions u(1) = v(1) = w(1) = 1, u(k+1) = u(k) + v(k) + w(k), v(k+1) = u(k)*v(k) + v(k)*w(k) + w(k)*u(k), and w(k+1) = u(k)*v(k)*w(k) for k >= 1; then a(n) = u(n).
Original entry on oeis.org
1, 3, 7, 31, 1279, 9202687, 3692849258577919, 98367959484921734629696721986125823, 3882894052327310957045599009145809243674851356642054390303168725061781159935999
Offset: 1
-
a[1] = 1; v[1] = 1; w[1] = 1; a[k_] := a[k] = a[k - 1] + v[k - 1] + w[k - 1]; v[k_] := v[k] = a[k - 1]*v[k - 1] + v[k - 1]*w[k - 1] + w[k - 1]*a[k - 1]; w[k_] := w[k] = a[k - 1]*v[k - 1]*w[k - 1]; Table[a[n], {n, 1, 9}] (* Vaclav Kotesovec, May 11 2020 *)
-
lista(nn) = {my(u = vector(nn)); my(v = vector(nn)); my(w = vector(nn)); u[1] = 1; v[1] = 1; w[1] = 1; for (n=2, nn, u[n] = u[n-1] + v[n-1] + w[n-1]; v[n] = u[n-1]*v[n-1] + v[n-1]*w[n-1] + w[n-1]*u[n-1]; w[n] = u[n-1]*v[n-1]*w[n-1];); u; } \\ Petros Hadjicostas, May 11 2020
A070233
Let u(k), v(k), w(k) satisfy the recursions u(1) = v(1) = w(1) = 1, u(k+1) = u(k) + v(k) + w(k), v(k+1) = u(k)*v(k) + v(k)*w(k) + w(k)*u(k), and w(k+1) = u(k)*v(k)*w(k) for k >= 1; then a(n) = w(n).
Original entry on oeis.org
1, 1, 9, 945, 8876385, 3689952451492545, 98367948795841301790914258556831105, 3882894052327309905582682317031276840071039865528864289025562807872336355445505
Offset: 1
-
u[1] = 1; v[1] = 1; a[1] = 1; u[k_] := u[k] = u[k - 1] + v[k - 1] + a[k - 1]; v[k_] := v[k] = u[k - 1]*v[k - 1] + v[k - 1]*a[k - 1] + a[k - 1]*u[k - 1]; a[k_] := a[k] = u[k - 1]*v[k - 1]*a[k - 1]; Table[a[n], {n, 1, 9}] (* Vaclav Kotesovec, May 11 2020 *)
-
lista(nn) = {my(u = vector(nn)); my(v = vector(nn)); my(w = vector(nn)); u[1] = 1; v[1] = 1; w[1] = 1; for (n=2, nn, u[n] = u[n-1] + v[n-1] + w[n-1]; v[n] = u[n-1]*v[n-1] + v[n-1]*w[n-1] + w[n-1]*u[n-1]; w[n] = u[n-1]*v[n-1]*w[n-1]; ); w; } \\ Petros Hadjicostas, May 11 2020
A094303
a(1) = 1, a(2) = 2, and a(n+1) = a(n) * sum of all previous terms up to a(n-1) for n >= 2.
Original entry on oeis.org
1, 2, 2, 6, 30, 330, 13530, 5019630, 69777876630, 351229105131280530, 24509789089304573335878465330, 8608552999157278550998626549630446732052243030
Offset: 1
-
nxt[{t1_,t2_,a_}]:=Module[{c=t1*a},{t1+t2,c,c}]; Join[{1},NestList[nxt,{1,2,2},10][[All,2]]] (* Harvey P. Dale, Aug 30 2020 *)
-
lista(nn) = { my(va = vector(nn)); va[1] = 1; va[2] = 2; for(n=3, nn, va[n] = va[n-1]*sum(k=1, n-2, va[k]);); va; } \\ Petros Hadjicostas, May 11 2020
A064183
Define a pair of sequences by p(0) = 0, q(0) = p(1) = q(1) = 1, q(n+1) = p(n)*q(n-1), p(n+1) = q(n+1) + q(n) for n > 0; then a(n) = q(n) and A064526(n) = p(n).
Original entry on oeis.org
1, 1, 1, 2, 3, 10, 39, 490, 20631, 10349290, 213941840151, 2214253254659846890, 473721461633379426414550183191, 1048939288228833100615882755549676600679754298090
Offset: 0
-
Flatten[{1, RecurrenceTable[{a[n]==(a[n-1]+a[n-2])*a[n-2], a[1]==1, a[2]==1},a,{n,1,10}]}] (* Vaclav Kotesovec, May 21 2015 *)
-
{a(n) = local(v); if( n<3, n>=0, v = [1,1]; for( k=3, n, v = [v[2], v[1] * (v[1] + v[2])]); v[2])}
-
{a(n) = if( n<3, n>=0, (a(n-1) + a(n-2)) * a(n-2))}
Showing 1-7 of 7 results.
Comments