cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A064183 Define a pair of sequences by p(0) = 0, q(0) = p(1) = q(1) = 1, q(n+1) = p(n)*q(n-1), p(n+1) = q(n+1) + q(n) for n > 0; then a(n) = q(n) and A064526(n) = p(n).

Original entry on oeis.org

1, 1, 1, 2, 3, 10, 39, 490, 20631, 10349290, 213941840151, 2214253254659846890, 473721461633379426414550183191, 1048939288228833100615882755549676600679754298090
Offset: 0

Views

Author

Michael Somos, Sep 20 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[{1, RecurrenceTable[{a[n]==(a[n-1]+a[n-2])*a[n-2], a[1]==1, a[2]==1},a,{n,1,10}]}] (* Vaclav Kotesovec, May 21 2015 *)
  • PARI
    {a(n) = local(v); if( n<3, n>=0, v = [1,1]; for( k=3, n, v = [v[2], v[1] * (v[1] + v[2])]); v[2])}
    
  • PARI
    {a(n) = if( n<3, n>=0, (a(n-1) + a(n-2)) * a(n-2))}

Formula

a(n) = (a(n-1) + a(n-2))*a(n-2) for n >= 2.
Lim_{n -> infinity} a(n)/a(n-1)^phi = 1, where phi = A001622. - Gerald McGarvey, Aug 29 2004
a(n) ~ c^(phi^n), where c = 1.23642417842410860616065684299168229758826316461949675490684055924721259... and phi = A001622 = (1 + sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, May 21 2015

A236394 Primes produced by A064526, in order of appearance.

Original entry on oeis.org

2, 3, 5, 13, 7, 23, 21121, 853, 12157, 213952189441, 31, 71427531245215711, 17, 163, 68743, 28031803, 88717035481559, 4549, 38197, 3835420378661, 1573954557128833179852821957
Offset: 1

Views

Author

N. J. A. Sloane, Jan 28 2014

Keywords

Crossrefs

A003686 Number of genealogical 1-2 rooted trees of height n.

Original entry on oeis.org

1, 2, 3, 5, 11, 41, 371, 13901, 5033531, 69782910161, 351229174914190691, 24509789089655802510792656021, 8608552999157278575508415639286249242844899051
Offset: 1

Views

Author

Vsevolod F. Lev, c. 1998

Keywords

Comments

Let u(n), v(n) be defined by u(1) = v(1) = 1, u(n+1) = u(n) + v(n) and v(n+1) = u(n)*v(n) for n >= 1; then a(n) = u(n) and A064847(n) = v(n). - Benoit Cloitre, Apr 01 2002 [Edited by Petros Hadjicostas, May 11 2020]
Consider the mapping f(a/b) = (a + b)/(a*b). Taking a = 1 and b = 1 to start with and carrying out this mapping repeatedly on each new (reduced) rational number gives the following sequence 1/1, 2/1, 3/2, 5/6, 11/30, ... The current sequence contains the numerators. - Amarnath Murthy, Mar 24 2003
An infinite coprime sequence defined by recursion. - Michael Somos, Mar 19 2004

References

  • D. Parisse, The Tower of Hanoi and the Stern-Brocot Array, Thesis, Munich, 1997.

Crossrefs

Programs

  • Magma
    I:=[1,2]; [n le 2 select I[n] else Self(n-1)+Self(n-2)*(Self(n-1)-Self(n-2)): n in [1..14]]; // Vincenzo Librandi, Jul 19 2016
  • Mathematica
    RecurrenceTable[{a[1]==1, a[2]==2, a[n]==a[n-1]+a[n-2](a[n-1]-a[n-2])}, a[n],{n,15}] (* Harvey P. Dale, Jul 27 2011 *)
    Re[NestList[Re@#+(1+I Re@#)Im@#&, 1+I, 15]] (* Vladimir Reshetnikov, Jul 18 2016 *)
  • PARI
    a(n) = local(an); if(n<1, 0, an=vector(max(2,n)); an[1]=1; an[2]=2; for(k=3, n, an[k]=an[k-1] - an[k-2]^2 + an[k-1]*an[k-2]); an[n])
    

Formula

Limit_{n -> infinity} a(n)^phi/A064847(n) = 1, where phi = (1 + sqrt(5))/2 is the golden ratio. - Benoit Cloitre, May 08 2002
Numerator of b(n), where b(n) = 1/numerator(b(n-1)) + 1/denominator(b(n-1)) for n >= 2 with b(1) = 1.
a(n+1) = a(n) + a(1)*a(2)*...*a(n-1) for n >= 2. Also a(n+1) = a(n) + a(n-1)*(a(n) - a(n-1)) for n >= 2. In both cases, we start with a(1) = 1 and a(2) = 2.
a(n) ~ c^(phi^n), where c = 1.22508584062304325811405322247537613534139348463831009881946422737141574647... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, May 21 2015

Extensions

Additional description from Andreas M. Hinz and Daniele Parisse

A001685 a(0) = 1, a(1) = 2, a(2) = 3; for n >= 3, a(n) = a(n-2) + a(n-1)*Product_{i=1..n-3} a(i).

Original entry on oeis.org

1, 2, 3, 5, 13, 83, 2503, 976253, 31601312113, 2560404986164794683, 202523113189037952478722304798003, 506227391211661106785411233681995783881012463859772443053
Offset: 0

Views

Author

Keywords

Comments

From a continued fraction.
Every term is relatively prime to all others. - Michael Somos, Feb 01 2004

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Clear[a]; a[0]=1; a[1]=2; a[2]=3; a[n_]:=a[n] = a[n-2] + a[n-1]*Product[a[j],{j,1,n-3}]; Table[a[n],{n,0,15}] (* Vaclav Kotesovec, May 21 2015 *)
    Clear[a];RecurrenceTable[{a[n]==a[n-2]+a[n-1]*a[n-3]*(a[n-1]-a[n-3])/a[n-2],a[0]==1,a[1]==2,a[2]==3},a,{n,0,15}] (* Vaclav Kotesovec, May 21 2015 *)
  • PARI
    a(n)=if(n<3,max(0,n+1),a(n-2)+a(n-1)*prod(i=1,n-3,a(i))) /* Michael Somos, Feb 01 2004 */

Formula

a(n) = a(n-2) + a(n-1)*a(n-3)*(a(n-1)-a(n-3))/a(n-2). - Vaclav Kotesovec, May 21 2015
a(n) ~ c^(d^n), where d = A109134 = 1.754877666246692760049508896358528691894606617772793143989283970646... is the root of the equation d*(d-1)^2 = 1, c = 1.3081335128180696870655208993764956995000211962454918672885690026423582299... . - Vaclav Kotesovec, May 21 2015

Extensions

Edited by N. J. A. Sloane, Jun 12 2006

A070231 Let u(k), v(k), w(k) satisfy the recursions u(1) = v(1) = w(1) = 1, u(k+1) = u(k) + v(k) + w(k), v(k+1) = u(k)*v(k) + v(k)*w(k) + w(k)*u(k), and w(k+1) = u(k)*v(k)*w(k) for k >= 1; then a(n) = u(n).

Original entry on oeis.org

1, 3, 7, 31, 1279, 9202687, 3692849258577919, 98367959484921734629696721986125823, 3882894052327310957045599009145809243674851356642054390303168725061781159935999
Offset: 1

Views

Author

Benoit Cloitre, May 08 2002

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 1; v[1] = 1; w[1] = 1; a[k_] := a[k] = a[k - 1] + v[k - 1] + w[k - 1]; v[k_] := v[k] = a[k - 1]*v[k - 1] + v[k - 1]*w[k - 1] + w[k - 1]*a[k - 1]; w[k_] := w[k] = a[k - 1]*v[k - 1]*w[k - 1]; Table[a[n], {n, 1, 9}] (* Vaclav Kotesovec, May 11 2020 *)
  • PARI
    lista(nn) = {my(u = vector(nn)); my(v = vector(nn)); my(w = vector(nn)); u[1] = 1; v[1] = 1; w[1] = 1; for (n=2, nn, u[n] = u[n-1] + v[n-1] + w[n-1]; v[n] = u[n-1]*v[n-1] + v[n-1]*w[n-1] + w[n-1]*u[n-1]; w[n] = u[n-1]*v[n-1]*w[n-1];); u; } \\ Petros Hadjicostas, May 11 2020

Formula

Let C be the positive root of x^3 + x^2 - 2*x - 1 = 0; that is, C = 1.246979603717... = A255249. Then Lim_{n -> infinity} u(n)^(C+1)/w(n)= Lim_{n -> infinity} v(n)^C/w(n) = Lim_{n -> infinity} u(n)^B/v(n) = 1 with B = C + 1 - 1/(1 + C) = 1.8019377... = A160389. [corrected by Vaclav Kotesovec, May 11 2020]
a(n) ~ gu^((1 + C)^n), where C is defined above and gu = 1.131945853718244297... The relation between constants gu, gv (see A070234) and gw (see A070233) is gu^(1 + C) = gv^C = gw. - Vaclav Kotesovec, May 11 2020

A070233 Let u(k), v(k), w(k) satisfy the recursions u(1) = v(1) = w(1) = 1, u(k+1) = u(k) + v(k) + w(k), v(k+1) = u(k)*v(k) + v(k)*w(k) + w(k)*u(k), and w(k+1) = u(k)*v(k)*w(k) for k >= 1; then a(n) = w(n).

Original entry on oeis.org

1, 1, 9, 945, 8876385, 3689952451492545, 98367948795841301790914258556831105, 3882894052327309905582682317031276840071039865528864289025562807872336355445505
Offset: 1

Views

Author

Benoit Cloitre, May 08 2002

Keywords

Comments

Next term is too large to include.

Crossrefs

Programs

  • Mathematica
    u[1] = 1; v[1] = 1; a[1] = 1; u[k_] := u[k] = u[k - 1] + v[k - 1] + a[k - 1]; v[k_] := v[k] = u[k - 1]*v[k - 1] + v[k - 1]*a[k - 1] + a[k - 1]*u[k - 1]; a[k_] := a[k] = u[k - 1]*v[k - 1]*a[k - 1]; Table[a[n], {n, 1, 9}] (* Vaclav Kotesovec, May 11 2020 *)
  • PARI
    lista(nn) = {my(u = vector(nn)); my(v = vector(nn)); my(w = vector(nn)); u[1] = 1; v[1] = 1; w[1] = 1; for (n=2, nn, u[n] = u[n-1] + v[n-1] + w[n-1]; v[n] = u[n-1]*v[n-1] + v[n-1]*w[n-1] + w[n-1]*u[n-1]; w[n] = u[n-1]*v[n-1]*w[n-1]; ); w; } \\ Petros Hadjicostas, May 11 2020

Formula

Let C be the positive root of x^3 + x^2 - 2*x - 1 = 0: that is, C = 1.246979603717... = A255249. Then Lim_{n -> infinity} u(n)^(C+1)/w(n)= Lim_{n -> infinity} v(n)^C/w(n) = Lim_{n -> infinity} u(n)^B/v(n) = 1 with B = C + 1 - 1/(1 + C) = 1.8019377... = A160389. [corrected by Vaclav Kotesovec, May 11 2020]
a(n) ~ gw^((C + 1)^n), where C is defined above and gw = 1.321128752475732548... The relation between constants gu (see A070231), gv (see A070234) and gw is gu^(1 + C) = gv^C = gw. - Vaclav Kotesovec, May 11 2020

A070234 Let u(k), v(k), w(k) satisfy the recursions u(1) = v(1) = w(1) = 1, u(k+1) = u(k) + v(k) + w(k), v(k+1) = u(k)*v(k) + v(k)*w(k) + w(k)*u(k), and w(k+1) = u(k)*v(k)*w(k); then a(n) = v(n).

Original entry on oeis.org

1, 3, 15, 303, 325023, 2896797882687, 10689080432835089614170716799, 1051462916692114532403603811392745230616355871287492722818364671
Offset: 1

Views

Author

Benoit Cloitre, May 08 2002

Keywords

Crossrefs

Programs

Formula

Let C be the positive root of x^3 + x^2 - 2*x - 1 = 0; that is, C = 1.246979603717... = A255249. Then Lim_{n -> infinity} u(n)^(C+1)/w(n) = Lim_{n -> infinity} v(n)^C/w(n) = Lim_{n -> infinity} u(n)^B/v(n) = 1 with B = C + 1 - 1/(1 + C) = 1.8019377... = A160389. [corrected by Vaclav Kotesovec, May 11 2020]
a(n) ~ gv^((C + 1)^n), where C is defined above and gv = 1.250231610564761084... The relation between constants gu (see A070231), gv and gw (see A070233) is gu^(1 + C) = gv^C = gw. - Vaclav Kotesovec, May 11 2020

A094303 a(1) = 1, a(2) = 2, and a(n+1) = a(n) * sum of all previous terms up to a(n-1) for n >= 2.

Original entry on oeis.org

1, 2, 2, 6, 30, 330, 13530, 5019630, 69777876630, 351229105131280530, 24509789089304573335878465330, 8608552999157278550998626549630446732052243030
Offset: 1

Views

Author

Amarnath Murthy, Apr 29 2004

Keywords

Comments

From Petros Hadjicostas, May 11 2020: (Start)
R. J. Mathar's conjecture is correct and this is identical to A064847 starting at n = 3. To see why this is the case, consider the sequences u(n) and v(n) defined by u(1) = v(1) = 1, and u(k+1) = u(k) + v(k), v(k+1) = u(k)*v(k) for k >= 1. Then u(n) = A003686(n) and v(n) = A064847(n) for n >= 1.
Then v(n) = u(n+1) - u(n), and thus Sum_{k=1..n-1} v(k) = u(n) - u(1) = u(n) - 1 for n >= 2. Then v(n-1) + ... + v(3) + (v(2) + 1) + v(1) = u(n) for n >= 3, and hence v(n)*(v(n-1) + ... + v(3) + (v(2) + 1) + v(1)) = u(n)*v(n) = v(n+1).
Since v(1) = 1 = a(1) and v(2) + 1 = 2 = a(2), the sequence (v(1), v(2) + 1, v(3), ..., v(n), ...) is identical to the current sequence. Hence, a(n) = v(n) = u(n+1) - u(n) = A003686(n+1) - A003686(n) for n >= 3. (End)

Crossrefs

See A064847 for another version.

Programs

  • Mathematica
    nxt[{t1_,t2_,a_}]:=Module[{c=t1*a},{t1+t2,c,c}]; Join[{1},NestList[nxt,{1,2,2},10][[All,2]]] (* Harvey P. Dale, Aug 30 2020 *)
  • PARI
    lista(nn) = { my(va = vector(nn)); va[1] = 1; va[2] = 2; for(n=3, nn, va[n] = va[n-1]*sum(k=1, n-2, va[k]);); va; } \\ Petros Hadjicostas, May 11 2020

Formula

Conjecture: a(n) = A003686(n+1) - A003686(n) for n >= 3. - R. J. Mathar, Apr 24 2007

Extensions

More terms from Gareth McCaughan, Jun 10 2004

A002715 An infinite coprime sequence defined by recursion.

Original entry on oeis.org

3, 7, 23, 47, 1103, 2207, 2435423, 4870847, 11862575248703, 23725150497407, 281441383062305809756861823, 562882766124611619513723647, 158418504200047111075388369241884118003210485743490303
Offset: 0

Views

Author

Keywords

Comments

Every term is relatively prime to all others.

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    a[n_?OddQ] := a[n] = 2*a[n-1] + 1; a[n_?EvenQ] := a[n] = (a[n-1]^2 - 3)/2; a[0] = 3; Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Jan 25 2013 *)
  • PARI
    a(n)=if(n<1,3*(n==0),if(n%2,2*a(n-1)+1,(a(n-1)^2-3)/2))

Formula

a(2n+1) = 2*a(2n)+1, a(2n) = (a(2n-1)^2-3)/2, with a(0)=3.

Extensions

More terms from Jeffrey Shallit
Edited by Michael Somos, Feb 01 2004

A002716 An infinite coprime sequence defined by recursion.

Original entry on oeis.org

3, 5, 13, 17, 241, 257, 65281, 65537, 4294901761, 4294967297, 18446744069414584321, 18446744073709551617, 340282366920938463444927863358058659841
Offset: 0

Views

Author

Keywords

Comments

Every term is relatively prime to all others. - Michael Somos, Feb 01 2004

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    a[0] = 3; a[1] = 5;
    a[n_] := a[n] = If[OddQ[n], a[n-1] + a[n-2] - 1, a[n-1]^2 - 3*a[n-1] + 3];
    Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Aug 16 2018, after Michel Somos *)
  • PARI
    {a(n) = if( n<2, 3 * (n>=0) + 2 * (n>0), if( n%2, a(n-1) + a(n-2) - 1, a(n-1)^2 - 3 * a(n-1) + 3))} /* Michael Somos, Feb 01 2004 */

Formula

a(2*n + 1) = a(2*n) + a(2*n - 1) - 1, a(2*n) = a(2*n - 1)^2 - 3 * a(2*n - 1) + 3, a(0) = 3, a(1) = 5. - Michael Somos, Feb 01 2004
Conjecture: a(2n+1)=A001146(n+1)+1. - R. J. Mathar, May 15 2007
a(2*n) = A220294(n). a(2*n + 1) = A000215(n+1). - Michael Somos, Dec 10 2012

Extensions

More terms from Jeffrey Shallit
Edited by Michael Somos, Feb 01 2004
Showing 1-10 of 13 results. Next