A064455 a(2n) = 3n, a(2n-1) = n.
1, 3, 2, 6, 3, 9, 4, 12, 5, 15, 6, 18, 7, 21, 8, 24, 9, 27, 10, 30, 11, 33, 12, 36, 13, 39, 14, 42, 15, 45, 16, 48, 17, 51, 18, 54, 19, 57, 20, 60, 21, 63, 22, 66, 23, 69, 24, 72, 25, 75, 26, 78, 27, 81, 28, 84, 29, 87, 30, 90, 31, 93, 32, 96, 33, 99, 34, 102, 35, 105, 36, 108
Offset: 1
Examples
a(13) = a(2*7 - 1) = 7, a(14) = a(2*7) = 21. a(8) = 8-9+10-11+12-13+14-15+16 = 12. - _Bruno Berselli_, Jun 05 2013
Links
- Harry J. Smith, Table of n, a(n) for n = 1..1000
- A. J. Macfarlane, Generating functions for integer sequences defined by the evolution of cellular automata with even rule numbers, 2016.
- S. Wolfram, Statistical mechanics of cellular automata, Rev. Mod. Phys., 55 (1983), 601--644.
- Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1)
Crossrefs
Programs
-
ARIBAS
maxarg := 75; for n := 1 to maxarg do if n mod 2 = 1 then write((n+1) div 2, " ") else write((n div 2)*3," "); end; end;
-
GAP
a:=[];; for n in [1..75] do if n mod 2 = 0 then Add(a,3*n/2); else Add(a,(n+1)/2); fi; od; a; # Muniru A Asiru, Oct 28 2018
-
Haskell
import Data.List (transpose) a064455 n = n + if m == 0 then n' else - n' where (n',m) = divMod n 2 a064455_list = concat $ transpose [[1 ..], [3, 6 ..]] -- Reinhard Zumkeller, Oct 12 2013
-
Magma
[(1/2)*n*(-1)^n+n+(1/4)*(1-(-1)^n): n in [1..80]]; // Vincenzo Librandi, Aug 10 2014
-
Maple
A064455 := proc(n) if type(n,'even') then 3*n/2 ; else (n+1)/2 ; end if; end proc: # R. J. Mathar, Aug 03 2015
-
Mathematica
Table[ If[ EvenQ[n], 3n/2, (n + 1)/2], {n, 1, 70} ]
-
PARI
a(n) = { if (n%2, (n + 1)/2, 3*n/2) } \\ Harry J. Smith, Sep 14 2009
-
PARI
a(n)=if(n<3,2*n-1,((n-1)*(n-2))%(2*n-1)) \\ Jim Singh, Oct 14 2018
-
Python
def A064455(n): return (3*n - (2*n-1)*(n%2))//2 print([A064455(n) for n in range(1,81)]) # G. C. Greubel, Jan 30 2025
Formula
a(n) = (1/2)*n*(-1)^n + n + (1/4)*(1 - (-1)^n). - Stephen Crowley, Aug 10 2009
G.f.: x*(1+3*x) / ( (1-x)^2*(1+x)^2 ). - R. J. Mathar, Mar 30 2011
From Jaroslav Krizek, Mar 22 2011: (Start)
a(n) = n - A123684(n-1) for odd n.
a(n) = n + a(n-1) for even n.
a(n) = Sum_{i=n..2*n} i*(-1)^i. - Bruno Berselli, Jun 05 2013
a(n) = n + floor(n/2)*(-1)^(n mod 2). - Bruno Berselli, Dec 14 2015
a(n) = (n^2-3*n+2) mod (2*n-1) for n>2. - Jim Singh, Oct 31 2018
E.g.f.: (1/2)*(x*cosh(x) + (1+3*x)*sinh(x)). - G. C. Greubel, Jan 30 2025
Comments