A064680 Halve every even number, double every odd number.
0, 2, 1, 6, 2, 10, 3, 14, 4, 18, 5, 22, 6, 26, 7, 30, 8, 34, 9, 38, 10, 42, 11, 46, 12, 50, 13, 54, 14, 58, 15, 62, 16, 66, 17, 70, 18, 74, 19, 78, 20, 82, 21, 86, 22, 90, 23, 94, 24, 98, 25, 102, 26, 106, 27, 110, 28, 114, 29, 118, 30, 122, 31, 126, 32, 130, 33, 134, 34, 138, 35
Offset: 0
Links
- Harry J. Smith, Table of n, a(n) for n = 0..1000, (corrected by _Peter Luschny_, Jan 19 2019)
- Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1).
Programs
-
Haskell
a064680 n = a064680_list !! n a064680_list = zipWith ($) (cycle [(`div` 2), (* 2)]) [0..] -- Reinhard Zumkeller, Jul 25 2012
-
Magma
[IsEven(n) select n/2 else 2*n: n in [0..70]]; // Bruno Berselli, Mar 09 2011
-
Maple
A064680:=n->n*(5-3*(-1)^n)/4: seq(A064680(n), n=0..100); # Wesley Ivan Hurt, Jul 24 2016
-
Mathematica
f[n_] := 2^(2 Mod[n, 2] - 1) n; Array[f, 70, 0] (* Or *) f[n_] := If[ OddQ@ n, 2 n, n/2]; Array[f, 71, 0] (* Or *) CoefficientList[ Series[x (2 + x + 2 x^2)/(1 - x^2)^2, {x, 0, 70}], x] (* Robert G. Wilson v *) LinearRecurrence[{0,2,0,-1},{0,2,1,6},80] (* Harvey P. Dale, Mar 31 2025 *)
-
PARI
a(n) = if (n%2, 2*n, n/2); \\ Harry J. Smith, Sep 22 2009
Formula
a(n) = n * 2^(2 * (n mod 2) - 1).
G.f.: x*(2+x+2*x^2)/(1-x^2)^2.
a(n) = 2*a(n-2) - a(n-4) for n>3.
a(n)*a(n+3) = -2 + a(n+1)*a(n+2).
a(n) = n*(5-3*(-1)^n)/4. - Bruno Berselli, Mar 09 2011
a(n)= (period 4 sequence: repeat 2, 2, 1, 2) * (A060819(n)=0,1,1,3,1,5,...). - Paul Curtz, Mar 10 2011
E.g.f.: x*(sinh(x) + 4*cosh(x))/2. - Ilya Gutkovskiy, Jul 24 2016
a(n) = lcm(numerator(n/2), denominator(n/2)). - Wesley Ivan Hurt, Jul 24 2016
a(n) = A176447(n) + n. - Filip Zaludek, Dec 10 2016
From Amiram Eldar, Oct 07 2023: (Start)
a(n) = lcm(n,2) / gcd(n,2).
Sum_{k=1..n} a(k) ~ (5/8)*n^2. (End)
Comments