cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064680 Halve every even number, double every odd number.

Original entry on oeis.org

0, 2, 1, 6, 2, 10, 3, 14, 4, 18, 5, 22, 6, 26, 7, 30, 8, 34, 9, 38, 10, 42, 11, 46, 12, 50, 13, 54, 14, 58, 15, 62, 16, 66, 17, 70, 18, 74, 19, 78, 20, 82, 21, 86, 22, 90, 23, 94, 24, 98, 25, 102, 26, 106, 27, 110, 28, 114, 29, 118, 30, 122, 31, 126, 32, 130, 33, 134, 34, 138, 35
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 16 2001

Keywords

Comments

a(a(m)) = m for all m with gcd(m, 4) <= 2.

Crossrefs

Programs

  • Haskell
    a064680 n = a064680_list !! n
    a064680_list = zipWith ($) (cycle [(`div` 2), (* 2)]) [0..]
    -- Reinhard Zumkeller, Jul 25 2012
  • Magma
    [IsEven(n) select n/2 else 2*n: n in [0..70]]; // Bruno Berselli, Mar 09 2011
    
  • Maple
    A064680:=n->n*(5-3*(-1)^n)/4: seq(A064680(n), n=0..100); # Wesley Ivan Hurt, Jul 24 2016
  • Mathematica
    f[n_] := 2^(2 Mod[n, 2] - 1) n; Array[f, 70, 0] (* Or *)
    f[n_] := If[ OddQ@ n, 2 n, n/2]; Array[f, 71, 0] (* Or *)
    CoefficientList[ Series[x (2 + x + 2 x^2)/(1 - x^2)^2, {x, 0, 70}], x] (* Robert G. Wilson v *)
    LinearRecurrence[{0,2,0,-1},{0,2,1,6},80] (* Harvey P. Dale, Mar 31 2025 *)
  • PARI
    a(n) = if (n%2, 2*n, n/2); \\ Harry J. Smith, Sep 22 2009
    

Formula

a(n) = n * 2^(2 * (n mod 2) - 1).
G.f.: x*(2+x+2*x^2)/(1-x^2)^2.
a(n) = 2*a(n-2) - a(n-4) for n>3.
a(n)*a(n+3) = -2 + a(n+1)*a(n+2).
a(2*n) = A001477(n), a(1+2*n) = A016825(n). - Paul Curtz, Mar 09 2011
a(n) = n*(5-3*(-1)^n)/4. - Bruno Berselli, Mar 09 2011
a(n)= (period 4 sequence: repeat 2, 2, 1, 2) * (A060819(n)=0,1,1,3,1,5,...). - Paul Curtz, Mar 10 2011
E.g.f.: x*(sinh(x) + 4*cosh(x))/2. - Ilya Gutkovskiy, Jul 24 2016
a(n) = lcm(numerator(n/2), denominator(n/2)). - Wesley Ivan Hurt, Jul 24 2016
a(n) = A176447(n) + n. - Filip Zaludek, Dec 10 2016
From Amiram Eldar, Oct 07 2023: (Start)
a(n) = lcm(n,2) / gcd(n,2).
Sum_{k=1..n} a(k) ~ (5/8)*n^2. (End)