A064709 Initial term of run of (exactly) n consecutive numbers with just 2 distinct prime factors.
6, 14, 20, 33, 54, 91, 323, 141
Offset: 1
Examples
6 = 2*3; 14 = 2*7 and 15 = 3*5; 20 = 2^2*5, 21 = 3*7 and 22 = 2*11; 33 = 3*11, 34 = 2*17, 35 = 5*7 and 36 = (2*3)^2; etc.
Links
- Roger B. Eggleton and James A. MacDougall, Consecutive integers with equally many principal divisors, Math. Mag. 81 (2008), 235-248. [_T. D. Noe_, Oct 13 2008]
- Carlos Rivera, Prime Puzzle 427
Crossrefs
Cf. A064708.
Programs
-
Mathematica
Function[s, Function[t, Map[t[[First@ FirstPosition[t[[All, -1]], k_ /; k == #] ]] &, Range[0, Max@ t[[All, -1]] ] ][[All, 1]] ]@ Join[{{First@ s, 0}, {#[[1, 1, 1]], 1}}, Rest@ Map[{#[[1, 1]], Length@ # + 1} &, #, {1}]] &@ SplitBy[Partition[Select[#, Last@ # == 1 &][[All, 1]], 2, 1], Differences] &@ Map[{First@ #, First@ Differences@ #} &, Partition[s, 2, 1]]]@ Select[Range[10^5], PrimeNu[#] == 2 &] (* Michael De Vlieger, Jul 17 2017 *) With[{t=Table[If[PrimeNu[n]==2,1,0],{n,350}]},Flatten[Table[ SequencePosition[ t,Join[{0},PadRight[{},k,1],{0}],1],{k,8}],1]][[All,1]]+1 (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 16 2020 *)
Comments