cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064723 (L(p)-1)/p where L() are the Lucas numbers (A000032) and p runs through the primes.

Original entry on oeis.org

1, 1, 2, 4, 18, 40, 210, 492, 2786, 39650, 97108, 1459960, 9030450, 22542396, 141358274, 2249412290, 36259245522, 91815545800, 1500020153484, 9702063416738, 24704432285040, 409634464205812, 2672366681180466, 44720842390302450, 1927655270098608960
Offset: 0

Views

Author

Shane Findley, Oct 13 2001

Keywords

Examples

			a(0) = (Lucas(2) - 1)/2 = (3 - 1)/2 = 1; a(3) = (Lucas(7) - 1)/7 = (29 - 1)/7 = 4.
		

Crossrefs

Programs

  • Magma
    [(Lucas(NthPrime(n))-1)/NthPrime(n): n in [1..40]]; // Vincenzo Librandi, Aug 22 2015
  • Maple
    A064723 := proc(n)
        p := ithprime(1+n) ;
        (A000032(p)-1)/p ;
    end proc: # R. J. Mathar, Jan 09 2017
  • Mathematica
    Array[(LucasL@ Prime@ # - 1)/Prime@ # &, {23}] (* Michael De Vlieger, Aug 22 2015 *)
  • PARI
    lucas(n) = if(n==0,2, if(n==1,1,fibonacci(n+1)+fibonacci(n-1)))
    forprime(n=1,100,print1((lucas(n)-1)/n, ", "))
    
  • PARI
    lucas(n)= { if(n==0, 2, if(n==1, 1, fibonacci(n + 1) + fibonacci(n - 1))) }
    { n=-1; forprime (p=2, prime(101), write("b064723.txt", n++, " ", (lucas(p) - 1)/p) ) } \\ Harry J. Smith, Sep 23 2009
    

Formula

a(n) = A006206(A000040(n+1)). - Creighton Dement, Nov 04 2005
a(n) = (round(phi^prime(n+1)) - 1)/prime(n+1), where phi is golden ratio (A001622). Indeed, L(p) = round(phi^p), and round(phi^p) == 1 (mod p) and, what is more, for p>=5, round(phi^p) == 1 (mod 2*p) (see Shevelev link). In particular, all terms >=2 are even. - Vladimir Shevelev, Mar 24 2014

Extensions

More terms from James Sellers and Klaus Brockhaus, Oct 16 2001