cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A063993 Number of ways of writing n as an unordered sum of exactly 3 nonzero triangular numbers.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 2, 1, 1, 1, 1, 2, 1, 2, 0, 2, 2, 2, 1, 1, 2, 2, 2, 0, 3, 2, 2, 2, 2, 2, 1, 3, 1, 2, 3, 2, 2, 2, 2, 3, 2, 2, 3, 3, 1, 2, 5, 1, 2, 1, 2, 5, 3, 3, 1, 4, 2, 3, 2, 2, 4, 4, 2, 1, 4, 3, 3, 3, 2, 4, 3, 3, 3, 4, 2, 1, 6, 1, 5, 3, 3, 5, 2, 2, 2, 5, 2, 5, 4, 2, 4, 5, 3, 1
Offset: 0

Views

Author

N. J. A. Sloane, Sep 18 2001

Keywords

Comments

a(A002097(n)) = 0; a(A111638(n)) = 1; a(A064825(n)) = 2. - Reinhard Zumkeller, Jul 20 2012

Examples

			5 = 3 + 1 + 1, so a(5) = 1.
		

Crossrefs

Cf. A053604, A008443, A002636, A064181 (greedy inverse), A307598 (3 distinct positive).
Column k=3 of A319797.

Programs

  • Haskell
    a063993 n = length [() | let ts = takeWhile (< n) $ tail a000217_list,
                        x <- ts, y <- takeWhile (<= x) ts,
                        let z = n - x - y, 0 < z, z <= y, a010054 z == 1]
    -- Reinhard Zumkeller, Jul 20 2012
    
  • Maple
    A063993 := proc(n)
        local a,t1idx,t2idx,t1,t2,t3;
        a := 0 ;
        for t1idx from 1 do
            t1 := A000217(t1idx) ;
            if 3*t1 > n then
                break;
            end if;
            for t2idx from t1idx do
                t2 := A000217(t2idx) ;
                if t1+t2 > n then
                    break;
                end if;
                t3 :=  n-t1-t2 ;
                if t3 >= t2 then
                    if isA000217(t3) then
                        a := a+1 ;
                    end if;
                end if ;
            end do:
        end do:
        a ;
    end proc: # R. J. Mathar, Apr 28 2020
  • Mathematica
    a = Table[ n(n + 1)/2, {n, 1, 15} ]; b = {0}; c = Table[ 0, {100} ]; Do[ b = Append[ b, a[ [ i ] ] + a[ [ j ] ] + a[ [ k ] ] ], {k, 1, 15}, {j, 1, k}, {i, 1, j} ]; b = Delete[ b, 1 ]; b = Sort[ b ]; l = Length[ b ]; Do[ If[ b[ [ n ] ] < 100, c[ [ b[ [ n ] ] + 1 ] ]++ ], {n, 1, l} ]; c
  • PARI
    trmx(n)=my(k=sqrtint(8*n+1)\2);if(k^2+k>2*n,k-1,k)
    trmn(n)=trmx(ceil(n)-1)+1
    a(n)=if(n<3, return(0)); sum(a=trmn(n/3),trmx(n-2),my(t=n-a*(a+1)/2);sum(b=trmn(t/2),min(trmx(t-1),a), ispolygonal(t-b*(b+1)/2,3))) \\ Charles R Greathouse IV, Jul 07 2022

Extensions

More terms from Robert G. Wilson v, Sep 20 2001

A002097 Numbers that are not the sum of 3 nonzero triangular numbers.

Original entry on oeis.org

1, 2, 4, 6, 11, 20, 29
Offset: 1

Views

Author

Keywords

Comments

A063993(a(n)) = 0. - Reinhard Zumkeller, Jul 20 2012

Crossrefs

Programs

  • Mathematica
    Complement[Range[30],Union[Total/@Tuples[Accumulate[Range[8]],3]]] (* Harvey P. Dale, Oct 06 2017 *)

A111638 Numbers having a unique partition into three positive triangular numbers.

Original entry on oeis.org

3, 5, 7, 8, 9, 10, 13, 14, 15, 16, 18, 24, 25, 36, 38, 50, 53, 55, 60, 69, 81, 83, 99, 110, 119
Offset: 1

Views

Author

T. D. Noe, Aug 10 2005

Keywords

Comments

A063993(a(n)) = 1. - Reinhard Zumkeller, Jul 20 2012

Examples

			Example: 119=55+36+28
		

Crossrefs

Cf. A060773 (n having a unique partition into three nonnegative triangular numbers).

Programs

  • Mathematica
    trig[n_]:=n(n+1)/2; trigInv[x_]:=Ceiling[Sqrt[Max[0, 2x]]]; lim=100; nLst=Table[0, {trig[lim]}]; Do[n=trig[a]+trig[b]+trig[c]; If[n>0 && n<=trig[lim], nLst[[n]]++ ], {a, 1, lim}, {b, a, trigInv[trig[lim]-trig[a]]}, {c, b, trigInv[trig[lim]-trig[a]-trig[b]]}]; Flatten[Position[nLst, 1]]

A071530 Numbers that are the sum of 3 triangular numbers in exactly 2 ways.

Original entry on oeis.org

3, 6, 7, 9, 10, 13, 15, 17, 18, 19, 23, 24, 25, 26, 32, 33, 35, 38, 41, 44, 47, 54, 60, 62, 68, 69, 74, 80, 83, 89, 95, 99, 110, 113, 119, 128, 179, 194
Offset: 1

Views

Author

Benoit Cloitre, Jun 02 2002

Keywords

Comments

If it is required that the triangular numbers be positive, sequence A064825 results. - Jon E. Schoenfield, Jan 01 2020

Examples

			From _Jon E. Schoenfield_, Jan 01 2020: (Start)
15 is a term of the sequence because there are exactly 2 ways to express 15 as the sum of 3 triangular numbers: 15 = 6 + 6 + 3 = 15 + 0 + 0.
60 is a term because there are exactly 2 ways to express 60 as the sum of 3 triangular numbers: 60 = 36 + 21 + 3 = 45 + 15 + 0.
12 can be expressed as the sum of 3 triangular numbers in 3 ways, so it is not a term: 12 = 10 + 1 + 1 = 6 + 6 + 0 = 6 + 3 + 3. (End)
		

Crossrefs

Programs

  • Mathematica
    With[{max = 20}, t = Accumulate[Range[0, max]]; Select[Range[t[[-1]]], Length[IntegerPartitions[#, {3}, t]] == 2 &]] (* Amiram Eldar, May 14 2025 *)
  • PARI
    for(n=1,150,if(sum(i=0,n,sum(j=0,i,sum(k=0,j,if(i*(i+1)/2+j*(j+1)/2+k*(k+1)/2-n,0,1))))==2,print1(n,",")))

Formula

{n: A002636(n) =2}. - R. J. Mathar, May 26 2025

Extensions

More terms from Vladeta Jovovic, Jun 07 2002
Removed keyword "more" because this is probably finite. - R. J. Mathar, May 26 2025

A330810 a(n) is the largest number that can be expressed as the sum of three triangular numbers in exactly n ways.

Original entry on oeis.org

53, 194, 470, 788, 1730, 2000, 2693, 4310, 6053, 6845, 10688, 11348, 13970, 12923, 20768, 17135, 27830, 26480, 36245, 31688, 37073, 39983, 57860, 46940, 49148, 68258, 62810, 66515, 76985, 73868, 82850, 123878, 87890, 119810, 111053, 118490, 118880, 119183
Offset: 1

Views

Author

Jon E. Schoenfield, Jan 01 2020

Keywords

Comments

One or more of the three triangular numbers may be zeros. If it were required that the triangular numbers be positive, sequence A330811 would result.

Crossrefs

A330811 a(n) is the largest number that can be expressed as the sum of three positive triangular numbers in exactly n ways.

Original entry on oeis.org

29, 119, 335, 713, 1730, 1328, 3413, 3485, 4565, 6053, 6950, 10688, 11348, 13970, 16778, 20768, 18173, 36245, 26480, 27203, 37073, 35033, 39983, 57860, 46940, 49148, 68258, 62810, 66515, 76985, 73868, 123878, 103403, 87890, 119810, 111053, 118490, 118880
Offset: 0

Views

Author

Jon E. Schoenfield, Jan 01 2020

Keywords

Comments

If the triangular numbers were not required to be positive, sequence A330810 would result.

Crossrefs

Showing 1-6 of 6 results.