cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A063993 Number of ways of writing n as an unordered sum of exactly 3 nonzero triangular numbers.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 2, 1, 1, 1, 1, 2, 1, 2, 0, 2, 2, 2, 1, 1, 2, 2, 2, 0, 3, 2, 2, 2, 2, 2, 1, 3, 1, 2, 3, 2, 2, 2, 2, 3, 2, 2, 3, 3, 1, 2, 5, 1, 2, 1, 2, 5, 3, 3, 1, 4, 2, 3, 2, 2, 4, 4, 2, 1, 4, 3, 3, 3, 2, 4, 3, 3, 3, 4, 2, 1, 6, 1, 5, 3, 3, 5, 2, 2, 2, 5, 2, 5, 4, 2, 4, 5, 3, 1
Offset: 0

Views

Author

N. J. A. Sloane, Sep 18 2001

Keywords

Comments

a(A002097(n)) = 0; a(A111638(n)) = 1; a(A064825(n)) = 2. - Reinhard Zumkeller, Jul 20 2012

Examples

			5 = 3 + 1 + 1, so a(5) = 1.
		

Crossrefs

Cf. A053604, A008443, A002636, A064181 (greedy inverse), A307598 (3 distinct positive).
Column k=3 of A319797.

Programs

  • Haskell
    a063993 n = length [() | let ts = takeWhile (< n) $ tail a000217_list,
                        x <- ts, y <- takeWhile (<= x) ts,
                        let z = n - x - y, 0 < z, z <= y, a010054 z == 1]
    -- Reinhard Zumkeller, Jul 20 2012
    
  • Maple
    A063993 := proc(n)
        local a,t1idx,t2idx,t1,t2,t3;
        a := 0 ;
        for t1idx from 1 do
            t1 := A000217(t1idx) ;
            if 3*t1 > n then
                break;
            end if;
            for t2idx from t1idx do
                t2 := A000217(t2idx) ;
                if t1+t2 > n then
                    break;
                end if;
                t3 :=  n-t1-t2 ;
                if t3 >= t2 then
                    if isA000217(t3) then
                        a := a+1 ;
                    end if;
                end if ;
            end do:
        end do:
        a ;
    end proc: # R. J. Mathar, Apr 28 2020
  • Mathematica
    a = Table[ n(n + 1)/2, {n, 1, 15} ]; b = {0}; c = Table[ 0, {100} ]; Do[ b = Append[ b, a[ [ i ] ] + a[ [ j ] ] + a[ [ k ] ] ], {k, 1, 15}, {j, 1, k}, {i, 1, j} ]; b = Delete[ b, 1 ]; b = Sort[ b ]; l = Length[ b ]; Do[ If[ b[ [ n ] ] < 100, c[ [ b[ [ n ] ] + 1 ] ]++ ], {n, 1, l} ]; c
  • PARI
    trmx(n)=my(k=sqrtint(8*n+1)\2);if(k^2+k>2*n,k-1,k)
    trmn(n)=trmx(ceil(n)-1)+1
    a(n)=if(n<3, return(0)); sum(a=trmn(n/3),trmx(n-2),my(t=n-a*(a+1)/2);sum(b=trmn(t/2),min(trmx(t-1),a), ispolygonal(t-b*(b+1)/2,3))) \\ Charles R Greathouse IV, Jul 07 2022

Extensions

More terms from Robert G. Wilson v, Sep 20 2001

A051611 Numbers that are not the sum of 2 nonzero triangular numbers.

Original entry on oeis.org

1, 3, 5, 8, 10, 14, 15, 17, 19, 23, 26, 28, 32, 33, 35, 40, 41, 44, 45, 47, 50, 52, 53, 54, 59, 62, 63, 68, 71, 74, 75, 77, 78, 80, 82, 85, 86, 89, 95, 96, 98, 103, 104, 105, 107, 109, 113, 116, 117, 118, 122, 124, 125, 128, 129, 131, 134, 138, 140, 143, 145, 147
Offset: 1

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de)

Keywords

Comments

A053603(a(n)) = 0. - Reinhard Zumkeller, Jun 28 2013

Crossrefs

Integers not in the sequence A051533. Cf. A002097, A000217, A007294, A051611, A053603.

Programs

  • Haskell
    a051611 n = a051611_list !! (n-1)
    a051611_list = filter ((== 0) . a053603) [1..]
    -- Reinhard Zumkeller, Jun 28 2013
  • Mathematica
    notSumQ[n_] := Reduce[ 0 < x <= y && n == x*(x + 1)/2 + y*(y + 1)/2, {x, y}, Integers] === False; Select[ Range[150], notSumQ] (* Jean-François Alcover, Jun 27 2012 *)
    With[{trnos=Accumulate[Range[100]]},Complement[Range[150],Total/@ Tuples[ trnos,2]]] (* Harvey P. Dale, Jun 01 2016 *)

A064825 Numbers which are the sums of three positive triangular numbers in exactly two different ways.

Original entry on oeis.org

12, 17, 19, 21, 22, 23, 26, 27, 28, 31, 32, 33, 34, 35, 39, 41, 42, 43, 44, 46, 47, 51, 54, 56, 62, 64, 65, 68, 74, 80, 88, 89, 90, 92, 95, 106, 113, 123, 128, 137, 141, 146, 153, 164, 179, 194, 200, 218, 245, 281, 326, 335
Offset: 1

Views

Author

Jonathan Ayres (jonathan.ayres(AT)btinternet.com), Oct 23 2001

Keywords

Comments

Checked up to 1000000 but haven't found any other values.
A063993(a(n)) = 2. - Reinhard Zumkeller, Jul 20 2012
Without the qualifier "positive" in the Name, sequence A071530 would result. - Jon E. Schoenfield, Jan 01 2020
No further terms <= 3*10^7. - Michael S. Branicky, Dec 17 2021

Examples

			19 = 10 + 6 + 3 = 15 + 3 + 1.
		

Crossrefs

Programs

  • Magma
    [k:k in [1..350]|#RestrictedPartitions(k, 3, {m*(m+1) div 2:m in [1..200]}) eq 2 ]; // Marius A. Burtea, Jan 01 2020
    
  • Python
    from collections import Counter
    from itertools import count, takewhile, combinations_with_replacement as mc
    def aupto(N):
        tris = takewhile(lambda x: x <= N, (i*(i+1)//2 for i in count(1)))
        sum3 = filter(lambda x: x <= N, (sum(c) for c in mc(tris, 3)))
        sum3counts = Counter(sum3)
        return sorted(k for k in sum3counts if sum3counts[k] == 2)
    print(aupto(1000)) # Michael S. Branicky, Dec 17 2021

Extensions

Offset changed to 1 by Michel Marcus, Jan 14 2014

A111638 Numbers having a unique partition into three positive triangular numbers.

Original entry on oeis.org

3, 5, 7, 8, 9, 10, 13, 14, 15, 16, 18, 24, 25, 36, 38, 50, 53, 55, 60, 69, 81, 83, 99, 110, 119
Offset: 1

Views

Author

T. D. Noe, Aug 10 2005

Keywords

Comments

A063993(a(n)) = 1. - Reinhard Zumkeller, Jul 20 2012

Examples

			Example: 119=55+36+28
		

Crossrefs

Cf. A060773 (n having a unique partition into three nonnegative triangular numbers).

Programs

  • Mathematica
    trig[n_]:=n(n+1)/2; trigInv[x_]:=Ceiling[Sqrt[Max[0, 2x]]]; lim=100; nLst=Table[0, {trig[lim]}]; Do[n=trig[a]+trig[b]+trig[c]; If[n>0 && n<=trig[lim], nLst[[n]]++ ], {a, 1, lim}, {b, a, trigInv[trig[lim]-trig[a]]}, {c, b, trigInv[trig[lim]-trig[a]-trig[b]]}]; Flatten[Position[nLst, 1]]

A071530 Numbers that are the sum of 3 triangular numbers in exactly 2 ways.

Original entry on oeis.org

3, 6, 7, 9, 10, 13, 15, 17, 18, 19, 23, 24, 25, 26, 32, 33, 35, 38, 41, 44, 47, 54, 60, 62, 68, 69, 74, 80, 83, 89, 95, 99, 110, 113, 119, 128, 179, 194
Offset: 1

Views

Author

Benoit Cloitre, Jun 02 2002

Keywords

Comments

If it is required that the triangular numbers be positive, sequence A064825 results. - Jon E. Schoenfield, Jan 01 2020

Examples

			From _Jon E. Schoenfield_, Jan 01 2020: (Start)
15 is a term of the sequence because there are exactly 2 ways to express 15 as the sum of 3 triangular numbers: 15 = 6 + 6 + 3 = 15 + 0 + 0.
60 is a term because there are exactly 2 ways to express 60 as the sum of 3 triangular numbers: 60 = 36 + 21 + 3 = 45 + 15 + 0.
12 can be expressed as the sum of 3 triangular numbers in 3 ways, so it is not a term: 12 = 10 + 1 + 1 = 6 + 6 + 0 = 6 + 3 + 3. (End)
		

Crossrefs

Programs

  • Mathematica
    With[{max = 20}, t = Accumulate[Range[0, max]]; Select[Range[t[[-1]]], Length[IntegerPartitions[#, {3}, t]] == 2 &]] (* Amiram Eldar, May 14 2025 *)
  • PARI
    for(n=1,150,if(sum(i=0,n,sum(j=0,i,sum(k=0,j,if(i*(i+1)/2+j*(j+1)/2+k*(k+1)/2-n,0,1))))==2,print1(n,",")))

Formula

{n: A002636(n) =2}. - R. J. Mathar, May 26 2025

Extensions

More terms from Vladeta Jovovic, Jun 07 2002
Removed keyword "more" because this is probably finite. - R. J. Mathar, May 26 2025

A330810 a(n) is the largest number that can be expressed as the sum of three triangular numbers in exactly n ways.

Original entry on oeis.org

53, 194, 470, 788, 1730, 2000, 2693, 4310, 6053, 6845, 10688, 11348, 13970, 12923, 20768, 17135, 27830, 26480, 36245, 31688, 37073, 39983, 57860, 46940, 49148, 68258, 62810, 66515, 76985, 73868, 82850, 123878, 87890, 119810, 111053, 118490, 118880, 119183
Offset: 1

Views

Author

Jon E. Schoenfield, Jan 01 2020

Keywords

Comments

One or more of the three triangular numbers may be zeros. If it were required that the triangular numbers be positive, sequence A330811 would result.

Crossrefs

A330811 a(n) is the largest number that can be expressed as the sum of three positive triangular numbers in exactly n ways.

Original entry on oeis.org

29, 119, 335, 713, 1730, 1328, 3413, 3485, 4565, 6053, 6950, 10688, 11348, 13970, 16778, 20768, 18173, 36245, 26480, 27203, 37073, 35033, 39983, 57860, 46940, 49148, 68258, 62810, 66515, 76985, 73868, 123878, 103403, 87890, 119810, 111053, 118490, 118880
Offset: 0

Views

Author

Jon E. Schoenfield, Jan 01 2020

Keywords

Comments

If the triangular numbers were not required to be positive, sequence A330810 would result.

Crossrefs

Showing 1-7 of 7 results.