A065220 a(n) = Fibonacci(n) - n.
0, 0, -1, -1, -1, 0, 2, 6, 13, 25, 45, 78, 132, 220, 363, 595, 971, 1580, 2566, 4162, 6745, 10925, 17689, 28634, 46344, 75000, 121367, 196391, 317783, 514200, 832010, 1346238, 2178277, 3524545, 5702853, 9227430, 14930316, 24157780, 39088131, 63245947, 102334115, 165580100, 267914254
Offset: 0
References
- Vinokur A.B, Huffman trees and Fibonacci numbers, Kibernetika Issue 6 (1986) 9-12 (in Russian); English translation in Cybernetics 21, Issue 6 (1986), 692-696.
Links
- Harry J. Smith, Table of n, a(n) for n = 0..300
- Gregory Dresden, On the Brousseau sums Sum_{i=1..n} i^p*Fibonacci(i), arxiv.org:2206.00115 [math.NT], 2022.
- Albert Frank, International Contest Of Logical Sequences, 2002 - 2003. Item 7
- Albert Frank, Solutions of International Contest Of Logical Sequences, 2002 - 2003.
- A. B. Vinokur, Huffman trees and Fibonacci numbers, Cybernetics 21, Issue 6 (1986), 692-696; also at Research Gate.
- Alex Vinokur, Fibonacci connection between Huffman codes and Wythoff array, arXiv:cs/0410013 [cs.DM], 2004-2005.
- Index entries for linear recurrences with constant coefficients, signature (3,-2,-1,1).
Programs
-
GAP
List([0..50], n-> Fibonacci(n) - n); # G. C. Greubel, Jul 09 2019
-
Haskell
a065220 n = a065220_list !! n a065220_list = zipWith (-) a000045_list [0..] -- Reinhard Zumkeller, Nov 06 2012
-
Magma
[Fibonacci(n) - n: n in [0..50]]; // G. C. Greubel, Jul 09 2019
-
Maple
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=a[n-1]+a[n-2] od: seq(a[n]-n, n=0..42); # Zerinvary Lajos, Mar 20 2008
-
Mathematica
lst={};Do[f=Fibonacci[n]-n;AppendTo[lst,f],{n,0,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Mar 21 2009 *) Table[Fibonacci[n]-n,{n,0,50}] (* or *) LinearRecurrence[{3,-2,-1,1},{0,0,-1,-1},50] (* Harvey P. Dale, May 29 2017 *)
-
PARI
a(n) = { fibonacci(n) - n } \\ Harry J. Smith, Oct 14 2009
-
Sage
[fibonacci(n) - n for n in (0..50)] # G. C. Greubel, Jul 09 2019
Comments