cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A112526 Characteristic function for powerful numbers.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Keywords

Comments

A signed multiplicative variant is defined by b(n) = a(n)*mu(n) with mu = A008683, such that b(p^e)=0 if e=1 and b(p^e)= -1 if e>1. This has Dirichlet series Sum_{n>=1} b(n)/n = A005596 and Sum_{n>=1} b(n)/n^2 = A065471. - R. J. Mathar, Apr 04 2011

Examples

			a(72) = 1 because 72 = 2^3*3^2 has all exponents > 1.
		

Crossrefs

Differs from characteristic function of perfect powers A075802 at Achilles numbers A052486.
Cf. A001694 (powerful numbers), A124010, A001221, A027746.

Programs

  • Haskell
    a112526 1 = 1
    a112526 n = fromEnum $ (> 1) $ minimum $ a124010_row n
    -- Reinhard Zumkeller, Jun 03 2015, Sep 16 2011
    
  • Mathematica
    cfpn[n_]:=If[n==1||Min[Transpose[FactorInteger[n]][[2]]]>1,1,0]; Array[ cfpn,120] (* Harvey P. Dale, Jul 17 2012 *)
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1+X^3)/(1-X^2))[n], ", ")) \\ Vaclav Kotesovec, Jul 15 2022
    
  • PARI
    a(n) = ispowerful(n); \\ Amiram Eldar, Jul 02 2025
    
  • Python
    from sympy import factorint
    def A112526(n): return int(all(e>1 for e in factorint(n).values())) # Chai Wah Wu, Sep 15 2024

Formula

Multiplicative with a(p^e) = 1 - 0^(e-1), e > 0 and p prime.
Dirichlet g.f.: zeta(2*s)*zeta(3*s)/zeta(6*s), e.g., A082695 at s=1.
a(n) * A008966(n) = A063524(n). - Reinhard Zumkeller, Sep 16 2011
a(n) = {m: Min{A124010(m,k): k=1..A001221(m)} > 1}. - Reinhard Zumkeller, Jun 03 2015
Sum_{k=1..n} a(k) ~ zeta(3/2)*sqrt(n)/zeta(3) + 6*zeta(2/3)*n^(1/3)/Pi^2. - Vaclav Kotesovec, Feb 08 2019
a(n) = Sum_{d|n} A005361(d)*A008683(n/d). - Ridouane Oudra, Jul 03 2025

A138402 a(n) = (n-th prime)^4-(n-th prime)^2.

Original entry on oeis.org

12, 72, 600, 2352, 14520, 28392, 83232, 129960, 279312, 706440, 922560, 1872792, 2824080, 3416952, 4877472, 7887672, 12113880, 13842120, 20146632, 25406640, 28392912, 38943840, 47451432, 62734320, 88519872, 104050200, 112540272
Offset: 1

Views

Author

Artur Jasinski, Mar 19 2008

Keywords

Crossrefs

Programs

  • Magma
    [NthPrime((n))^4 - NthPrime((n))^2: n in [1..30] ]; // Vincenzo Librandi, Jun 17 2011
  • Mathematica
    a = {}; Do[p = Prime[n]; AppendTo[a, p^4 - p^2], {n, 1, 50}]; a
    #^4-#^2&/@Prime[Range[30]] (* Harvey P. Dale, Sep 19 2018 *)
  • PARI
    forprime(p=2,1e3,print1(p^4-p^2", ")) \\ Charles R Greathouse IV, Jun 16 2011
    
  • PARI
    apply(p->p^4-p^2, primes(100)) \\ Charles R Greathouse IV, Apr 17 2015
    

Formula

Product_{n>=1} (1 - 1/a(n)) = A065471.
From Amiram Eldar, Nov 22 2022: (Start)
a(n) = A001248(n) * A084920(n).
a(n) = A036689(n) * A036690(n). (End)

A078086 Continued fraction expansion of Product_{p prime}(1 - 1/(p^2*(p^2-1))).

Original entry on oeis.org

0, 1, 9, 5, 10, 1, 6, 1, 1, 1, 11, 1, 5, 1, 10, 1, 17, 5, 5, 6, 1, 13, 6, 3, 1, 1, 4, 1, 1, 2, 1, 3, 3, 1, 5, 7, 1, 17, 5, 2, 1, 10, 2, 2, 1, 14, 62, 3, 3, 4, 1, 1, 4, 8, 1041, 86, 1, 6, 1, 2, 6, 12, 1, 45, 2, 45, 2, 3, 2, 1, 1, 2, 2, 1, 4, 1, 1, 21, 5, 6, 4, 1, 1, 4, 1, 2, 2, 3, 2, 6, 1
Offset: 0

Views

Author

Benoit Cloitre, Dec 02 2002

Keywords

Crossrefs

Cf. A065471 (decimal expansion).

Programs

  • PARI
    contfrac(prodeulerrat(1 - 1/(p^2*(p^2-1)))) \\ Amiram Eldar, Mar 16 2021

Extensions

Offset changed by Andrew Howroyd, Jul 05 2024
Showing 1-3 of 3 results.