A065563 Product of three consecutive Fibonacci numbers.
2, 6, 30, 120, 520, 2184, 9282, 39270, 166430, 704880, 2986128, 12649104, 53583010, 226980390, 961505790, 4073001576, 17253515288, 73087057560, 309601753890, 1311494059590, 5555578014142, 23533806080736, 99690802394400, 422297015565600, 1788878864806850, 7577812474550214
Offset: 1
References
- Mohammad K. Azarian, Fibonacci Identities as Binomial Sums II, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 42, 2012, pp. 2053-2059.
- Mohammad K. Azarian, Fibonacci Identities as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 38, 2012, pp. 1871-1876.
- T. Koshy, Fibonacci and Lucas numbers with applications, Wiley, 2001, p. 89, No. 32, with a minus sign.
Links
- Harry J. Smith, Table of n, a(n) for n=1..200
- V. E. Hoggatt and D. A. Lind, The Heights of Fibonacci Polynomials and an Associated Function, Fibonacci Quarterly, Vol. 5, No. 2 (April, 1967), pp. 141-152.
- Joseph S. Ozbolt, A New Sequence Derived From a Combination of Cubes with Volume Fn^3, Fibonacci Quarterly, Vol. 50, No. 1 (2012), pp. 19-26.
- Index entries for linear recurrences with constant coefficients, signature (3,6,-3,-1).
Programs
-
Magma
[&*[Fibonacci(n+k): k in [0..2] ]: n in [1..30]]; // Vincenzo Librandi, Apr 09 2020
-
Maple
with (combinat):a:=n->fibonacci(n)*fibonacci(n+1)*fibonacci(n+2): seq(a(n), n=1..22); # Zerinvary Lajos, Oct 07 2007
-
Mathematica
Times@@@Partition[Fibonacci[Range[30]],3,1] (* Harvey P. Dale, Aug 18 2011 *)
-
PARI
a(n) = { fibonacci(n)*fibonacci(n + 1)*fibonacci(n + 2) } \\ Harry J. Smith, Oct 22 2009
Formula
G.f.: 2/(1 - 3*x - 6*x^2 + 3*x^3 + x^4).
a(n) = 2*A001655(n).
a(n) = Fibonacci(n+1)^3-(-1)^n*Fibonacci(n+1). - Gary Detlefs, Feb 02 2011
This corrects a sign mistake in the Koshy reference. - Wolfdieter Lang, Aug 07 2012
a(n) = 3*a(n-1) + 6*a(n-2) - 3*a(n-3) - a(n-4).
O.g.f.: 2*x/((1 + x - x^2)*(1 - 4*x - x^2)) (compare with A001655). - Wolfdieter Lang, Aug 06 2012
Sum_{n>=1} (-1)^(n+1)/a(n) = A079586 - 3. - Amiram Eldar, Oct 04 2020
Sum_{n>=1} 1/a(n) = A324007. - Amiram Eldar, Feb 09 2023
Extensions
Offset changed from 0 to 1 by Harry J. Smith, Oct 22 2009