cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065563 Product of three consecutive Fibonacci numbers.

Original entry on oeis.org

2, 6, 30, 120, 520, 2184, 9282, 39270, 166430, 704880, 2986128, 12649104, 53583010, 226980390, 961505790, 4073001576, 17253515288, 73087057560, 309601753890, 1311494059590, 5555578014142, 23533806080736, 99690802394400, 422297015565600, 1788878864806850, 7577812474550214
Offset: 1

Views

Author

Len Smiley, Nov 30 2001

Keywords

References

  • Mohammad K. Azarian, Fibonacci Identities as Binomial Sums II, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 42, 2012, pp. 2053-2059.
  • Mohammad K. Azarian, Fibonacci Identities as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 38, 2012, pp. 1871-1876.
  • T. Koshy, Fibonacci and Lucas numbers with applications, Wiley, 2001, p. 89, No. 32, with a minus sign.

Crossrefs

Programs

  • Magma
    [&*[Fibonacci(n+k): k in [0..2] ]: n in [1..30]]; // Vincenzo Librandi, Apr 09 2020
  • Maple
    with (combinat):a:=n->fibonacci(n)*fibonacci(n+1)*fibonacci(n+2): seq(a(n), n=1..22); # Zerinvary Lajos, Oct 07 2007
  • Mathematica
    Times@@@Partition[Fibonacci[Range[30]],3,1] (* Harvey P. Dale, Aug 18 2011 *)
  • PARI
    a(n) = { fibonacci(n)*fibonacci(n + 1)*fibonacci(n + 2) } \\ Harry J. Smith, Oct 22 2009
    

Formula

a(n) = A000045(n)*A000045(n+1)*A000045(n+2).
G.f.: 2/(1 - 3*x - 6*x^2 + 3*x^3 + x^4).
a(n) = 2*A001655(n).
a(n) = Fibonacci(n+1)^3-(-1)^n*Fibonacci(n+1). - Gary Detlefs, Feb 02 2011
This corrects a sign mistake in the Koshy reference. - Wolfdieter Lang, Aug 07 2012
a(n) = 3*a(n-1) + 6*a(n-2) - 3*a(n-3) - a(n-4).
O.g.f.: 2*x/((1 + x - x^2)*(1 - 4*x - x^2)) (compare with A001655). - Wolfdieter Lang, Aug 06 2012
Sum_{n>=1} (-1)^(n+1)/a(n) = A079586 - 3. - Amiram Eldar, Oct 04 2020
Sum_{n>=1} 1/a(n) = A324007. - Amiram Eldar, Feb 09 2023

Extensions

Offset changed from 0 to 1 by Harry J. Smith, Oct 22 2009