A065941 T(n,k) = binomial(n-floor((k+1)/2), floor(k/2)). Triangle read by rows, for 0 <= k <= n.
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 4, 3, 3, 1, 1, 1, 5, 4, 6, 3, 1, 1, 1, 6, 5, 10, 6, 4, 1, 1, 1, 7, 6, 15, 10, 10, 4, 1, 1, 1, 8, 7, 21, 15, 20, 10, 5, 1, 1, 1, 9, 8, 28, 21, 35, 20, 15, 5, 1, 1, 1, 10, 9, 36, 28, 56, 35, 35, 15, 6, 1, 1, 1, 11, 10, 45, 36, 84, 56, 70, 35, 21, 6, 1
Offset: 0
Examples
Triangle T(n, k) begins: n\k 0 1 2 3 4 5 6 7 8 9 ... --------------------------------------- [0] 1, [1] 1, 1, [2] 1, 1, 1, [3] 1, 1, 2, 1, [4] 1, 1, 3, 2, 1, [5] 1, 1, 4, 3, 3, 1, [6] 1, 1, 5, 4, 6, 3, 1, [7] 1, 1, 6, 5, 10, 6, 4, 1, [8] 1, 1, 7, 6, 15, 10, 10, 4, 1, [9] 1, 1, 8, 7, 21, 15, 20, 10, 5, 1, --------------------------------------- From _Gary W. Adamson_, Oct 23 2019: (Start) Consider the roots of the polynomials corresponding to odd N such that for N=7 the polynomial is (x^3 + x^2 - 2x - 1) and the roots (a, b, c) are (-1.8019377..., 1.247697..., and -0.445041...). The discriminant of a polynomial derived from the roots is the square of the product of successive differences: ((a-b), (b-c), (c-a))^2 in this case, resulting in 49, matching the method derived from the coefficients of a cubic. For our purposes we use the product of the differences, not the square, resulting in (3.048...) * (1.69202...) * (1.35689...) = 7.0. Conjecture: for all polynomials in the set, the product of the differences of the roots = the corresponding N. For N = 7, we get x^3 - 7x + 7. It appears that for all prime N's, these resulting companion polynomials are monic (left coefficient is 1), and all other coefficients are N or multiples thereof, with the rightmost term = N. The companion polynomials for the first few primes are: N = 5: x^2 - 5; N = 7: x^3 - 7x + 7; N = 11: x^5 - 11x^3 + 11x^2 + 11x - 11; N = 13: x^6 - 13x^4 + 13x^3 + 26x^2 - 39x + 13; N = 17: x^8 - 17x^6 + 17x^5 + 68x^4 - 119x^3 + 17x^2 + 51x - 17; N = 19: x^9 - 19x^7 + 19x^6 + 95x^5 - 171x^4 - 19x^3 + 190x^2 - 114x + 19. (End)
Links
- Nathaniel Johnston, Rows 0..100, flattened
- Leonard E. Dickson, The Inscription of Regular Polygons, The American Mathematical Monthly, Vol. 1, No. 9 (Sep., 1894), pp. 299-301.
- Henry W. Gould, A Variant of Pascal's Triangle, The Fibonacci Quarterly, Vol. 3, Nr. 4, Dec. 1965, pp. 257-271, with corrections.
- A. F. Horadam, R. P. Loh and A. G. Shannon, Divisibility properties of some Fibonacci-type sequences, pp. 55-64 of Combinatorial Mathematics VI (Armidale 1978), Lect. Notes Math. 748, 1979. See Table 4.
- A. F. Horadam, R. P. Loh and A. G. Shannon, Divisibility properties of some Fibonacci-type sequences, pp. 55-64 of Combinatorial Mathematics VI (Armidale 1978), Lect. Notes Math. 748, 1979. [Annotated scanned copy]
- Jay Kappraff, Beyond Measure, A Guided Tour Through Nature, Myth and Number, World Scientific, 2002; p. 490.
- Jay Kappraff, S. Jablan, G. W. Adamson, and R. Sazdanovich, Golden Fields, Generalized Fibonacci Sequences, and Chaotic Matrices, FORMA, Vol. 19, No. 4, 2005.
- Jay Kappraff and Gary W. Adamson, Polygons and Chaos, Journal of Dynamical Systems and Geometric Theories, Vol 2 (2004), p 65.
- Thomas Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley and Sons, 2001 (Chapter 14)
- E. Munarini and N. Z. Salvi, Binary strings without zigzags, Séminaire Lotharingien de Combinatoire, B49h (2004), 15 pp.
- Wolfdieter Lang, The field Q(2cos(pi/n)), its Galois group and length ratios in the regular n-gon, arXiv:1210.1018 [math.GR], 2012-2017.
- P.C. Parks, A new proof of the Routh-Hurwitz stability criterion using the second method of Liapunov , Math. Proc. of the Cambridge Philosophical Society, Vol. 58, Issue 04 (1962) p. 694-702.
- P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31.
- Index entries for triangles and arrays related to Pascal's triangle
Crossrefs
Programs
-
Haskell
a065941 n k = a065941_tabl !! n !! k a065941_row n = a065941_tabl !! n a065941_tabl = iterate (\row -> zipWith (+) ([0] ++ row) (zipWith (*) (row ++ [0]) a059841_list)) [1] -- Reinhard Zumkeller, May 07 2012
-
Magma
[Binomial(n - Floor((k+1)/2), Floor(k/2)): k in [0..n], n in [0..15]]; // G. C. Greubel, Jul 10 2019
-
Maple
A065941 := proc(n,k): binomial(n-floor((k+1)/2),floor(k/2)) end: seq(seq(A065941(n,k), k=0..n), n=0..15); # Johannes W. Meijer, Aug 11 2011 A065941 := proc(n,k) option remember: local j: if k=0 then 1 elif k=1 then 1: elif k>=2 then add(procname(j,k-2), j=k-2..n-2) fi: end: seq(seq(A065941(n,k), k=0..n), n=0..15); # Johannes W. Meijer, Aug 11 2011 # The function qStirling2 is defined in A333143. seq(print(seq(qStirling2(n, k, -1), k=0..n)), n=0..9); # Peter Luschny, Mar 09 2020
-
Mathematica
Flatten[Table[Binomial[n-Floor[(k+1)/2],Floor[k/2]],{n,0,15},{k,0,n}]] (* Harvey P. Dale, Dec 11 2011 *)
-
PARI
T065941(n, k) = binomial(n-(k+1)\2, k\2); \\ Michel Marcus, Apr 28 2014
-
Sage
[[binomial(n - floor((k+1)/2), floor(k/2)) for k in (0..n)] for n in (0..15)] # G. C. Greubel, Jul 10 2019
Formula
T(n, k) = binomial(n-floor((k+1)/2), floor(k/2)).
As a square array read by antidiagonals, this is given by T1(n, k) = binomial(floor(n/2) + k, k). - Paul Barry, Mar 11 2003
Triangle is a reflection of that in A066170 (absolute values). - Gary W. Adamson, Feb 16 2004
Recurrences: T(k, 0) = 1, T(k, n) = T(k-1, n) + T(k-2, n-2), or T(k, n) = T(k-1, n) + T(k-1, n-1) if n even, T(k-1, n-1) if n odd. - Ralf Stephan, May 17 2004
G.f.: sum[n, sum[k, T(k, n)x^ky^n]] = (1+xy)/(1-y-x^2y^2). sum[n>=0, T(k, n)y^n] = y^k/(1-y)^[k/2]. - Ralf Stephan, May 17 2004
From Johannes W. Meijer, Aug 11 2011: (Start)
T(n+k, n-k) = A109223(n,k).
T(n, k) = sum(T(j, k-2), j=k-2..n-2), 2 <= k <= n, n>=2;
T(n, 0) =1, T(n+1, 1) = 1, n >= 0. (End)
For n > 1: T(n, k) = T(n-2, k) + T(n-1, k), 1 < k < n. - Reinhard Zumkeller, Apr 24 2013
Comments