A066318 Number of necklaces with n labeled beads of 2 colors.
2, 4, 16, 96, 768, 7680, 92160, 1290240, 20643840, 371589120, 7431782400, 163499212800, 3923981107200, 102023508787200, 2856658246041600, 85699747381248000, 2742391916199936000, 93241325150797824000, 3356687705428721664000, 127554132806291423232000
Offset: 1
Keywords
References
- F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 66 (2.1.27,29).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..400
- Alexsandar Petojevic, The Function vM_m(s; a; z) and Some Well-Known Sequences, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.7.
- Wikipedia, Normal distribution, formula for E(|x|^p).
- Index entries for sequences related to necklaces.
Crossrefs
Programs
-
GAP
a_n:=List([1..10], n->Factorial(n-1)*2^n); # Stefano Spezia, Nov 17 2018
-
Magma
[Factorial(n-1)*2^n: n in [1..20]]; // Vincenzo Librandi, Sep 23 2011
-
Maple
with(combstruct):A:=[N,{N=Cycle(Union(Z$2))},labeled]: seq(count(A,size=n),n=1..18); # Zerinvary Lajos, Oct 07 2007 # alternative Maple program: a:= n-> 2*doublefactorial(2*n-2): seq(a(n), n=1..20); # Alois P. Heinz, Jun 22 2017
-
Mathematica
mx = 18; Rest[ Range[0, mx]! CoefficientList[ Series[ Log[1/(1 - 2 x)], {x, 0, mx}], x]] (* Robert G. Wilson v, Sep 22 2011 *) Table[(n-1)!*2^n,{n,20}] (* Harvey P. Dale, Dec 15 2011 *)
-
Maxima
a(n):=(n-1)!*2^n$ makelist(a(n), n, 1, 10); /* Stefano Spezia, Nov 21 2018 */
-
PARI
apply( A066318=n->(n-1)!<
M. F. Hasler, Jan 15 2017 -
Python
import math for n in range(1,10): print(math.factorial(n-1)*2**n, end=', ') # Stefano Spezia, Nov 17 2018
-
Sage
[2^n*factorial(n-1) for n in (1..20)] # G. C. Greubel, Nov 21 2018
Formula
a(n) = (n-1)!*2^n.
E.g.f.: log(1/(1-2*x)).
Let gd(x,n) = (d^n/dx^n)(exp(-(1/2)*x^2)*sqrt(2)/(2*sqrt(Pi))) = (-1)^((1/2)*n)*(x^2)^((1/2)*n)*2^(-(1/2)*n+1/2)*(exp(I*Pi*n)+1)/(4*sqrt(Pi)*GAMMA(1+(1/2)*n)) be the n-th derivative of the standard Gaussian distribution. Evaluating gd(x,n) at x=1 gives gd(1,n) = 2^(-(1/2)*n+1/2)*(exp(I*Pi*n)+1)*(-1)^((1/2)*n)/(4*sqrt(Pi)*GAMMA(1+(1/2)*n)). A066318 is the denominator of the even summands of the Taylor series expansion of the Gaussian distribution evaluated at x=1. a(n)=denom(gd(1, 2*n))/sqrt(Pi). - Stephen Crowley, May 16 2009
a(n) = 2*(n-1)*a(n-1). - R. J. Mathar, Sep 10 2012
G.f.: G(0), where G(k)= 1 + 1/(1 - 1/(1 + 1/(2*k+2)/x/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 14 2013
a(n) = 2 * (2*n-2)!! = 2 * A000165(n-1). - Alois P. Heinz, Jun 22 2017
a(n) = (sqrt(Pi)/Gamma((2*n+3)/2))*Product_{k=0..n-1} binomial(2*(n-k)+1,2). - Stefano Spezia, Nov 17 2018
From Amiram Eldar, Mar 11 2022: (Start)
Sum_{n>=1} 1/a(n) = sqrt(e)/2 (A019775).
Sum_{n>=1} (-1)^(n+1)/a(n) = 1/(2*sqrt(e)). (End)
Comments