cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A101925 a(n) = A005187(n) + 1.

Original entry on oeis.org

1, 2, 4, 5, 8, 9, 11, 12, 16, 17, 19, 20, 23, 24, 26, 27, 32, 33, 35, 36, 39, 40, 42, 43, 47, 48, 50, 51, 54, 55, 57, 58, 64, 65, 67, 68, 71, 72, 74, 75, 79, 80, 82, 83, 86, 87, 89, 90, 95, 96, 98, 99, 102, 103, 105, 106, 110, 111, 113, 114, 117, 118, 120, 121, 128, 129
Offset: 0

Views

Author

Ralf Stephan, Dec 28 2004

Keywords

Comments

Exponent of 2 in the sequences A032184, A052278, A060055, A066318, A088229, A101926.
p(n) sequence for k=2, s=0. p(n) = min(j: A046699(j) = n). - Frank Ruskey and Chris Deugau (deugaucj(AT)uvic.ca)

Crossrefs

Bisection of A089279. First differences are in A001511.

Programs

  • Mathematica
    Table[IntegerExponent[(2 n)!, 2] + 1, {n, 0, 65}] (* or *)
    Table[2 n - DigitCount[2 n, 2, 1] + 1, {n, 0, 65}] (* Michael De Vlieger, Feb 04 2017 *)
  • PARI
    a(n)=1+sum(k=1, n, valuation(k,2)+1)
    
  • PARI
    a(n)=if(n==0,1,if((n%2)==0,2*a(n/2)+subst(Pol(binary(n)),x,1)-1,a(n-1)+1))
    
  • PARI
    a(n)=2*n+1-hammingweight(n) \\ Charles R Greathouse IV, Dec 29 2022
    
  • Python
    def A101925(n): return (n<<1)-n.bit_count()+1 # Chai Wah Wu, Jul 13 2022

Formula

Recurrence: a(2n) = 2a(n) + A000120(n) - 1, a(2n+1) = a(2n) + 1.
G.f.: (1 / 1-z) * (z + z * sum(z^(2^i) * (s + (1 / (1 - z^(2^k)))),i=0..infinity)). - Frank Ruskey and Chris Deugau (deugaucj(AT)uvic.ca)

A032184 a(n) = 2^n*(n-1)! for n > 1, a(1) = 1.

Original entry on oeis.org

1, 4, 16, 96, 768, 7680, 92160, 1290240, 20643840, 371589120, 7431782400, 163499212800, 3923981107200, 102023508787200, 2856658246041600, 85699747381248000, 2742391916199936000, 93241325150797824000, 3356687705428721664000, 127554132806291423232000
Offset: 1

Views

Author

Keywords

Comments

Previous name was: "CIJ" (necklace, indistinct, labeled) transform of 1, 3, 5, 7, ...

Crossrefs

Apart from the initial term, same as A066318.

Programs

Formula

a(n) = 2^n*(n-1)! for n > 1, a(1) = 1.
E.g.f.: (1 + 2*x)/(1 - 2*x). - Paul Barry, May 26 2003 [This e.g.f. yields the sequence (a(n+1): n >= 0). - M. F. Hasler, Jan 15 2017]
a(n) + 2*(-n+1)*a(n-1) = 0. - R. J. Mathar, Nov 30 2012 [Valid for n >= 3; equivalently: a(n+1) = 2*n*a(n) for n > 1. - M. F. Hasler, Jan 15 2017]
G.f.: G(0) - 1, where G(k) = 1 + 1/(1 - 1/(1 + 1/((2*k + 2)*x*G(k+1)))); (continued fraction). - Sergei N. Gladkovskii, Jun 14 2013
Let s(n) = Sum_{k >= 1} 1/(2*k - 1)^n with n > 1, then s(n) = (-1)^n*PolyGamma(n-1, 1/2)/a(n). - Jean-François Alcover, Dec 18 2013
a(n) = round(-zeta(n)(1/2)) where zeta(n)(1/2) is the n-th derivative of the zeta function at 1/2. - Artur Jasinski, Feb 06 2021
E.g.f.: -x-log(1-2*x). - Alois P. Heinz, Mar 10 2022
Sum_{n>=1} 1/a(n) = (exp(1/2)+1)/2. - Amiram Eldar, Feb 02 2023

Extensions

New name (using first formula) from Joerg Arndt, Mar 10 2022

A219570 Triangular array read by rows. T(n,k) is the number of necklaces (turning over is not allowed) of n labeled black or white beads having exactly k black beads.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 2, 6, 6, 2, 6, 24, 36, 24, 6, 24, 120, 240, 240, 120, 24, 120, 720, 1800, 2400, 1800, 720, 120, 720, 5040, 15120, 25200, 25200, 15120, 5040, 720, 5040, 40320, 141120, 282240, 352800, 282240, 141120, 40320, 5040, 40320, 362880, 1451520, 3386880, 5080320, 5080320, 3386880, 1451520, 362880, 40320
Offset: 0

Views

Author

Geoffrey Critzer, Nov 23 2012

Keywords

Comments

Row sums are A066318.

Examples

			0;
1,      1;
1,      2,     1;
2,      6,     6,     2;
6,     24,    36,    24,     6;
24,   120,   240,   240,   120,    24;
120,  720,  1800,  2400,  1800,   720,  120;
720, 5040, 15120, 25200, 25200, 15120, 5040, 720;
		

Programs

  • Mathematica
    nn=8;f[list_]:=Select[list,#>0&];Map[f,Drop[Range[0,nn]!CoefficientList[Series[Log[1/(1-(y+1)x)],{x,0,nn}],{x,y}],1]]//Grid
  • PARI
    T(n, k) = if(n>0, (n-1)! * binomial(n, k)); \\ Andrew Howroyd, Oct 11 2017

Formula

E.g.f.: log(1/(1 - (y + 1)*x)).
T(n, k) = (n-1)! * binomial(n, k) for n > 0. - Andrew Howroyd, Oct 11 2017

A097632 a(n) = 2^n * Lucas(n) * (n-1)!.

Original entry on oeis.org

2, 12, 64, 672, 8448, 138240, 2672640, 60641280, 1568931840, 45705461760, 1478924697600, 52646746521600, 2044394156851200, 86005817907609600, 3896481847600742400, 189139342470414336000, 9793081532749971456000, 538748376721309827072000, 31381673358053118836736000
Offset: 1

Views

Author

Ralf Stephan, Aug 17 2004

Keywords

Comments

Number of possible well-colored cycles on n nodes. Well-colored means, each green vertex has at least a red child, each red vertex has no red child.

Crossrefs

Programs

  • Mathematica
    a[n_] := 2^n*LucasL[n,1]*(n-1)!; Array[a,19] (* or *)
    nmax=19; CoefficientList[Series[-Log[1-2x-4x^2], {x,0,nmax}], x]Range[0,nmax]! (* Stefano Spezia, Jan 15 2024 *)
  • Python
    def A097632(n):
        L0, L1, F, i = 1, 2, 2, 1
        while i < n:
            L0, L1, F, i = L0+L1, L0, 2*i*F, i+1
        return L0*F # A.H.M. Smeets, Jan 15 2024

Formula

E.g.f.: -log(1-2*x-4*x^2).
a(n) = A000204(n) * A066318(n).
a(n) ~ sqrt(2*Pi/n)*(2*n*phi/e)^n. - Stefano Spezia, Jan 16 2024

Extensions

Definition corrected by and a(18)-a(19) from Stefano Spezia, Jan 15 2024

A159749 The decomposition of a certain labeled universe (A052584), triangle read by rows.

Original entry on oeis.org

2, 2, 4, 2, 12, 16, 0, 24, 96, 96, -8, 0, 320, 960, 768, 0, -240, 0, 4800, 11520, 7680, 240, 0, -6720, 0, 80640, 161280, 92160, 0, 13440, 0, -188160, 0, 1505280, 2580480, 1290240, -24192, 0, 645120, 0, -5419008, 0, 30965760, 46448640, 20643840
Offset: 0

Views

Author

Peter Luschny, Apr 20 2009

Keywords

Comments

T(n,k) is a weighted binomial sum of the Bernoulli numbers A027641/A027642 with A027641(1) = 1, which amounts to the definition B_{n} = B_{n}(1).

Examples

			2
2, 4
2, 12, 16
0, 24, 96, 96
-8, 0, 320, 960, 768
0, -240, 0, 4800, 11520, 7680
240, 0, -6720, 0, 80640, 161280, 92160
		

Crossrefs

Programs

  • Maple
    T := (n,k) -> (n+1)!*binomial(n,k)*bernoulli(n-k,1)*2^(k+1)/(k+1);
  • Mathematica
    T[n_, k_] := (n+1)! Binomial[n, k] BernoulliB[n-k, 1] 2^(k+1)/(k+1);
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] (* Jean-François Alcover, Jun 17 2019 *)

Formula

T(n,k) = (n+1)!*C(n,k)*B_{n-k}*2^(k+1)/(k+1).
T(n,n) = A066318(n+1) = n!*2^(n+1) (necklaces with n labeled beads of 2 colors; see also A032184).
Sum_{k=0..n} T(n,k) = A052584(n+1) = (n+1)!*(1+2^n).

A369881 Decimal expansion of 1/(2*sqrt(e)).

Original entry on oeis.org

3, 0, 3, 2, 6, 5, 3, 2, 9, 8, 5, 6, 3, 1, 6, 7, 1, 1, 8, 0, 1, 8, 9, 9, 7, 6, 7, 4, 9, 5, 5, 9, 0, 2, 2, 6, 7, 2, 0, 9, 5, 9, 0, 6, 7, 7, 4, 3, 5, 9, 3, 4, 7, 7, 8, 4, 1, 4, 4, 6, 0, 7, 9, 3, 6, 7, 5, 2, 8, 2, 5, 9, 7, 0, 6, 8, 7, 4, 2, 1, 1, 9, 9, 9, 3, 2, 3, 8, 0, 5, 7, 5, 3, 9, 9, 4, 7, 2, 8, 0, 1, 3, 2, 1, 1
Offset: 0

Views

Author

Amiram Eldar, Feb 04 2024

Keywords

Examples

			0.30326532985631671180189976749559022672095906774359...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[1/(2*Sqrt[E]), 10, 105][[1]]
  • PARI
    exp(-1/2)/2

Formula

Equals A092605 / 2.
Equals exp(-(1 + A187832)).
Equals Sum_{n>=1} (-1)^(n+1)/A066318(n).
Equals lim_{n->oo} sqrt(n)*(((n+1)!)^(1/(2*(n+1))) - (n!)^(1/(2*n))) (Batinetu-Giurgiu, 2016).
Showing 1-6 of 6 results.