cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A152684 a(n) is the number of top-down sequences (F_1, F_2, ..., F_n) whereas each F_i is a labeled forest on n nodes, containing i directed rooted trees. F_(i+1) is proper subset of F_i.

Original entry on oeis.org

1, 2, 18, 384, 15000, 933120, 84707280, 10569646080, 1735643790720, 362880000000000, 94121726392108800, 29658516531078758400, 11159820050604594969600, 4942478402320838374195200, 2544989406021562500000000000, 1507645899890367707813511168000
Offset: 1

Views

Author

Fabian Nedic, Dec 10 2008

Keywords

Examples

			a(1) = 1^(1-2)*(1!) = 1.
a(2) = 2^(2-2)*(2!) = 2.
a(3) = 3^(3-2)*(3!) = 18.
		

References

  • Miklos Bona, Introduction to Enumerative Combinatorics, McGraw Hill 2007, Page 276.

Crossrefs

Programs

  • Magma
    [Factorial(n-1)*n^(n-1): n in [1..20]]; // G. C. Greubel, Nov 28 2022
    
  • Maple
    a:= proc(n) option remember; `if`(n=1, 1,
          a(n-1)*(n/(n-1))^(n-3)*n^2)
        end:
    seq(a(n), n=1..20);  # Alois P. Heinz, May 16 2013
  • Mathematica
    Table[n^(n - 1) (n - 1)!, {n, 1, 16}]  (* Geoffrey Critzer, May 10 2013 *)
  • SageMath
    [factorial(n-1)*n^(n-1) for n in range(1,21)] # G. C. Greubel, Nov 28 2022

Formula

a(n) = n^(n-2)*(n!).

A137268 Triangle T(n, k) = k! * (k+1)^(n-k), read by rows.

Original entry on oeis.org

1, 2, 2, 4, 6, 6, 8, 18, 24, 24, 16, 54, 96, 120, 120, 32, 162, 384, 600, 720, 720, 64, 486, 1536, 3000, 4320, 5040, 5040, 128, 1458, 6144, 15000, 25920, 35280, 40320, 40320, 256, 4374, 24576, 75000, 155520, 246960, 322560, 362880, 362880
Offset: 1

Views

Author

Roger L. Bagula, Mar 12 2008

Keywords

Comments

Essentially the same as A104001.

Examples

			Triangle begins as:
    1;
    2,     2;
    4,     6,     6;
    8,    18,    24,     24;
   16,    54,    96,    120,    120;
   32,   162,   384,    600,    720,     720;
   64,   486,  1536,   3000,   4320,    5040,    5040;
  128,  1458,  6144,  15000,  25920,   35280,   40320,   40320;
  256,  4374, 24576,  75000, 155520,  246960,  322560,  362880,  362880;
  512, 13122, 98304, 375000, 933120, 1728720, 2580480, 3265920, 3628800, 3628800;
		

Crossrefs

Programs

  • Magma
    [Factorial(k)*(k+1)^(n-k): k in [1..n], n in [1..12]]; // G. C. Greubel, Nov 28 2022
    
  • Mathematica
    T[n_, k_]:= k!*(k+1)^(n-k);
    Table[T[n, k], {n, 12}, {k, n}]//Flatten
  • SageMath
    def A137268(n,k): return factorial(k)*(k+1)^(n-k)
    flatten([[A137268(n,k) for k in range(1,n+1)] for n in range(14)]) # G. C. Greubel, Nov 28 2022

Formula

J(b, n) = (b+1)^(n-b)*b! if n > b, otherwise n! (notation of Chung and Graham).
From G. C. Greubel, Nov 28 2022: (Start)
T(n, k) = k! * (k+1)^(n-k).
T(n, n-2) = 2*A074143(n), n > 1.
T(2*n, n) = A152684(n).
T(2*n, n-1) = A061711(n).
T(2*n+1, n+1) = A066319(n). (End)

Extensions

Edited by G. C. Greubel, Nov 28 2022

A342811 Volume of the permutohedron obtained from the coordinates 1, 2, 4, ..., 2^(n-1), multiplied by (n-1)!.

Original entry on oeis.org

1, 13, 1009, 354161, 496376001, 2632501072321, 52080136110870785, 3872046158193220660993, 1099175272489026844687825921, 1210008580962784935280673680079873, 5225407816779297641534116390319222362113
Offset: 2

Views

Author

Andrey Zabolotskiy, Mar 22 2021

Keywords

Comments

Here the volume is relative to the unit cell of the lattice which is the intersection of Z^n with the hyperplane spanning the polytope.
a(n) is the number of subgraphs of the complete bipartite graph K_{n-1,n} such that for any vertex from the 2nd part there is a matching that covers all other vertices; Postnikov calls the characterization of such subgraphs "the dragon marriage problem".

Crossrefs

Cf. A066319 (analog for regular permutohedron), A087422, A227414, A342812.

Programs

  • Mathematica
    a[n_] := Sum[(p.(2^Range[0, n-1]))^(n-1) / Times @@ Differences[p], {p, Permutations@Range@n}];
    Table[a[n], {n, 2, 8}]
Showing 1-3 of 3 results.