A067771 Number of vertices in Sierpiński triangle of order n.
3, 6, 15, 42, 123, 366, 1095, 3282, 9843, 29526, 88575, 265722, 797163, 2391486, 7174455, 21523362, 64570083, 193710246, 581130735, 1743392202, 5230176603, 15690529806, 47071589415, 141214768242, 423644304723, 1270932914166
Offset: 0
Examples
Order 0 is a triangle, so a(0) = 3. Order 1 has three corners (degree 2) and three other vertices, so a(1) = 6. 3 example graphs: o / \ o---o / \ / \ o o---o---o / \ / \ / \ o o---o o---o o---o / \ / \ / \ / \ / \ / \ / \ o---o o---o---o o---o---o---o---o Graph: S_1 S_2 S_3 Vertices: 3 6 15 Edges: 3 9 27
References
- Peter Wessendorf and Kristina Downing, personal communication.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..600
- Allan Bickle, Properties of Sierpinski Triangle Graphs, Springer PROMS 448 (2021) 295-303.
- Paul Bradley and Peter Rowley, Orbits on k-subsets of 2-transitive Simple Lie-type Groups, 2014.
- A. Hinz, S. Klavzar, and S. Zemljic, A survey and classification of Sierpinski-type graphs, Discrete Applied Mathematics 217 3 (2017), 565-600.
- András Kaszanyitzky, Triangular fractal approximating graphs and their covering paths and cycles, arXiv:1710.09475 [math.CO], 2017. See Table 2.
- C. Lanius, Fractals.
- Eric Weisstein's World of Mathematics, Dorogovtsev-Goltsev-Mendes Graph.
- Eric Weisstein's World of Mathematics, Sierpiński Gasket Graph.
- Eric Weisstein's World of Mathematics, Total Domination Number.
- Index entries for linear recurrences with constant coefficients, signature (4,-3).
Crossrefs
Programs
-
Magma
[(3/2)*(1+3^n): n in [0..30]]; // Vincenzo Librandi, Jun 20 2011
-
Mathematica
LinearRecurrence[{4, -3}, {3, 6}, 26] (* or *) CoefficientList[Series[3 (1 - 2 x)/((1 - x) (1 - 3 x)), {x, 0, 25}], x] (* Michael De Vlieger, Feb 02 2017 *) Table[3/2 (3^n + 1), {n, 0, 20}] (* Eric W. Weisstein, Jan 14 2024 *) 3/2 (3^Range[0, 20] + 1) (* Eric W. Weisstein, Jan 14 2024 *)
Formula
a(n) = (3/2)*(3^n + 1).
a(n) = 3 + 3^1 + 3^2 + 3^3 + 3^4 + ... + 3^n = 3 + Sum_{k=1..n} 3^n.
a(n) = 3*A007051(n).
a(0) = 3, a(n) = a(n-1) + 3^n. a(n) = (3/2)*(1+3^n). - Zak Seidov, Mar 19 2007
a(n) = 4*a(n-1) - 3*a(n-2).
G.f.: 3*(1-2*x)/((1-x)*(1-3*x)). - Colin Barker, Jan 10 2012
a(n) = A233774(2^n). - Omar E. Pol, Dec 16 2013
a(n) = 3*a(n-1) - 3. - Zak Seidov, Oct 26 2014
E.g.f.: 3*(exp(x) + exp(3*x))/2. - Stefano Spezia, Feb 09 2021
a(n) = A029858(n+1) + 3. - Allan Bickle, Aug 03 2024
Extensions
More terms from Benoit Cloitre, Feb 22 2002
Comments