cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A224613 a(n) = sigma(6*n).

Original entry on oeis.org

12, 28, 39, 60, 72, 91, 96, 124, 120, 168, 144, 195, 168, 224, 234, 252, 216, 280, 240, 360, 312, 336, 288, 403, 372, 392, 363, 480, 360, 546, 384, 508, 468, 504, 576, 600, 456, 560, 546, 744, 504, 728, 528, 720, 720, 672, 576, 819, 684, 868, 702, 840, 648
Offset: 1

Views

Author

Zak Seidov, Apr 22 2013

Keywords

Comments

Conjectures: sigma(6n) > sigma(6n - 1) and sigma(6n) > sigma(6n + 1).
Conjectures are false. Try prime 73961483429 for n. One finds sigma(6*73961483429) < sigma(6*73961483429+1). The number n = 105851369791 provides a counterexample for the other case. - T. D. Noe, Apr 22 2013
Sum of the divisors of the numbers k which have the property that the width associated to the vertex of the first (also the last) valley of the smallest Dyck path of the symmetric representation of sigma(k) is equal to 2 (see example). Other positive integers have width 0 or 1 associated to the mentioned valley. - Omar E. Pol, Aug 11 2021

Examples

			From _Omar E. Pol_, Aug 11 2021: (Start)
Illustration of initial terms:
----------------------------------------------------------------------
   n    6*n   a(n)    Diagram:  1           2           3           4
----------------------------------------------------------------------
                                _           _           _           _
                               | |         | |         | |         | |
                               | |         | |         | |         | |
                          * _ _| |         | |         | |         | |
                           |  _ _|         | |         | |         | |
                      _ _ _| |_|           | |         | |         | |
   1     6     12    |_ _ _ _|      * _ _ _| |         | |         | |
                                    _|  _ _ _|         | |         | |
                                * _|  _| |             | |         | |
                                 |  _|  _|    * _ _ _ _| |         | |
                                 | |_ _|       |  _ _ _ _|         | |
                      _ _ _ _ _ _| |          _| | |               | |
   2    12     28    |_ _ _ _ _ _ _|        _|  _|_|    * _ _ _ _ _| |
                                      * _ _|  _|         |  _ _ _ _ _|
                                       |  _ _|        _ _| | |
                                       | |_ _|      _|  _ _| |
                                       | |        _|  _|  _ _|
                      _ _ _ _ _ _ _ _ _| |       |  _|  _|
   3    18     39    |_ _ _ _ _ _ _ _ _ _|  * _ _| |  _|
                                             |  _ _| |
                                             | |_ _ _|
                                             | |
                                             | |
                      _ _ _ _ _ _ _ _ _ _ _ _| |
   4    24     60    |_ _ _ _ _ _ _ _ _ _ _ _ _|
.
Note that the mentioned vertices are aligned on two straight lines that meet at point (3,3).
a(n) equals the area (also the number of cells) in the n-th diagram. (End)
		

Crossrefs

Sigma(k*n): A000203 (k=1), A062731 (k=2), A144613 (k=3), A193553 (k=4), A283118 (k=5), this sequence (k=6), A283078 (k=7), A283122 (k=8), A283123 (k=9).
Cf. A000203 (sigma(n)), A053224 (n: sigma(n) < sigma(n+1)).
Cf. A067825 (even n: sigma(n)< sigma(n+1)).

Programs

  • Mathematica
    DivisorSigma[1,6*Range[60]] (* Harvey P. Dale, Apr 16 2016 *)
  • PARI
    a(n)=sigma(6*n) \\ Charles R Greathouse IV, Apr 22 2013
    
  • Python
    from sympy import divisor_sigma
    def a(n):  return divisor_sigma(6*n)
    print([a(n) for n in range(1, 54)]) # Michael S. Branicky, Dec 28 2021
    
  • Python
    from math import prod
    from collections import Counter
    from sympy import factorint
    def A224613(n): return prod((p**(e+1)-1)//(p-1) for p, e in (Counter(factorint(n))+Counter([2,3])).items()) # Chai Wah Wu, Sep 07 2023

Formula

a(n) = A000203(6n).
a(n) = A000203(A008588(n)). - Omar E. Pol, Aug 11 2021
Sum_{k=1..n} a(k) = (55*Pi^2/72) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 16 2022

Extensions

Corrected by Harvey P. Dale, Apr 16 2016

A067828 Odd numbers k such that sigma(k+1) < sigma(k).

Original entry on oeis.org

45, 105, 117, 165, 225, 273, 297, 315, 345, 357, 405, 465, 513, 525, 561, 585, 621, 693, 705, 765, 777, 825, 837, 861, 885, 945, 1005, 1113, 1125, 1155, 1185, 1197, 1281, 1305, 1365, 1395, 1425, 1485, 1521, 1545, 1575, 1593, 1617, 1701, 1725, 1755, 1785, 1845
Offset: 1

Views

Author

Benoit Cloitre, Feb 08 2002

Keywords

Comments

Most terms are == 3 (mod 6), first term == 1 (mod 6) is a(130) = 5005. First term == 5 (mod 6) may be 247818996425. - Jianing Song, Apr 01 2018

Crossrefs

Programs

A323380 Odd n such that sigma(n) > sigma(n+1) and sigma(n) > sigma(n-1), sigma = A000203.

Original entry on oeis.org

315, 405, 525, 693, 765, 945, 1125, 1155, 1395, 1575, 1755, 1785, 1845, 1995, 2205, 2475, 2565, 2805, 2835, 3003, 3045, 3285, 3315, 3465, 3645, 3675, 3885, 4095, 4125, 4275, 4347, 4455, 4515, 4725, 4995, 5115, 5355, 5445, 5733, 5775, 5805, 6045, 6195, 6237, 6405, 6435
Offset: 1

Views

Author

Jianing Song, Jan 12 2019

Keywords

Comments

Numbers k such that k is in A067828 and that k - 1 is in A067825.
It's often the case that the sum of divisors for an odd number is less than at least one of its adjacent even numbers. This sequence lists the exceptions.
Most terms are congruent to 3 modulo 6. It seems that the smallest term not congruent to 3 modulo 6 is greater than 10^12.

Examples

			sigma(314) = 474, sigma(315) = 624, sigma(316) = 560, so 315 is a term.
		

Crossrefs

Similar sequences: A076773, A323379.

Programs

  • Mathematica
    Select[Range[1,8000,2],DivisorSigma[1,#] > DivisorSigma[1,(#+1)] && DivisorSigma[1,#] > DivisorSigma[1,(#-1)] &] (* K. D. Bajpai, Nov 19 2019 *)
  • PARI
    forstep(n=3,2000,2,if(sigma(n)>sigma(n-1)&&sigma(n)>sigma(n+1), print1(n, ", ")))
Showing 1-3 of 3 results.