A242804
Integers k such that each of k, k+1, k+2, k+4, k+5, k+6 is the product of two distinct primes.
Original entry on oeis.org
213, 143097, 194757, 206133, 273417, 684897, 807657, 1373937, 1391757, 1516533, 1591593, 1610997, 1774797, 1882977, 1891761, 2046453, 2051493, 2163417, 2163957, 2338053, 2359977, 2522517, 2913837, 3108201, 4221753
Offset: 1
213=3*71, 214=2*107, 215=5*43, 217=7*31, 218=2*109, 219=3*73.
Cf.
A242793 (minima for two, three and more prime divisors) and
A068088 (arbitrary squarefree integers).
-
f:= t -> numtheory:-issqrfree(t) and (numtheory:-bigomega(t) = 2):
select(t -> andmap(f, [t,t+1,t+2,t+4,t+5,t+6]), [seq(36*k+33,k=0..10^6)]); # Robert Israel, Apr 15 2015
-
fQ[n_] := PrimeQ[n/3] && PrimeQ[(n + 1)/2] && PrimeQ[(n + 5)/2] && PrimeQ[(n + 6)/3] && PrimeNu[{n + 2, n + 4}] == {2, 2} == PrimeOmega[{n + 2, n + 4}]; k = 33; lst = {}; While[k < 10^8, If[fQ@ k, AppendTo[lst, k]]; k += 36]; lst (* Robert G. Wilson v, Apr 14 2015 and revised Apr 15 2015 after Zak Seidov and Robert Israel *)
-
default(primelimit, 1000M); i=0; j=0; k=0; l=0; m=0; loc=0; lb=2; ub=9*10^9; o=2; for(n=lb, ub, if(issquarefree(n)&&(o==omega(n)), loc=loc+1; if(1==loc, i=n; ); if(2==loc, if(i+1==n, j=n; ); if(i+1
-
forstep(x=213,4221753,12, if( isprime(x/3) && isprime((x+1)/2) && 2==omega(x+2) && 2==bigomega(x+2) && 2==omega(x+4) && 2==bigomega(x+4) && isprime((x+5)/2) && isprime((x+6)/3), print1(x", "))) \\ Zak Seidov, Apr 14 2015
A242793
The minimal integer x such that each of the six integers x, x+1, x+2, x+4, x+5, x+6 is squarefree with exactly n prime divisors.
Original entry on oeis.org
213, 73293, 9743613, 6639266409
Offset: 2
213=3*71, 214=2*107, 215=5*43, 217=7*31, 218=2*109, 219=3*73;
73293=3*11*2221, 73294=2*13*2819, 73295=5*107*137,
73297=7*37*283, 73298=2*67*547, 73299=3*53*461;
9743613=3*11*503*587, 9743614=2*59*71*1163, 9743615= 5*7*167*1667, 9743617=13*37*47*431, 9743618=2*17*19*15083, 9743619=3*83*109*359;
6639266409=3*29*109*421*1663, 6639266410=2*5*7*113*839351,
6639266411=17*23*89*101*1889, 6639266413=13*61*79*131*809,
6639266414=2*11*349*857*1009, 6639266415=3*5*73*149*40693.
-
{ default(primelimit,1000M); i=0; j=0; k=0; l=0; m=0; loc=0; lb=2; ub=9*10^9; o=1; while(o<5, o=o+1; for(n=lb,ub, if(issquarefree(n)&&(o==omega(n)), loc=loc+1; if(1==loc, i=n; ); if(2==loc, if(i+1==n, j=n; ); if(i+1
A270996
T(i, j) = k is the least squarefree number with a run of exactly i>=0 nonsquarefree numbers immediately preceding k and a run of exactly j>=0 nonsquarefree numbers immediately succeeding k.
Original entry on oeis.org
2, 1, 3, 10, 17, 7, 101, 149, 151, 47, 246, 51, 26, 97, 8474, 1685, 8479, 727, 1861, 241, 843, 22026, 849, 3178, 2526, 10826, 30247, 22019, 217077, 190453, 813251, 55779, 183553, 5045, 580847, 826823
Offset: 0
a(13) = T(1, 3) = 97 since 96, 98, 99 and 100 are nonsquarefree while 95, 97, and 101 are squarefree, and 97 is the smallest number surrounded by the 1,3 pattern.
The matrix T(i, j) with first 8 complete antidiagonals together with some additional elements including the first 7 elements on the diagonal which are A270344(0)..A270344(6):
-------------------------------------------------------------------------
i\j 0 1 2 3 4 5 6 7
-------------------------------------------------------------------------
0: 2 3 7 47 8474 843 22019 826823
1: 1 17 151 97 241 30247 580847 217069
2: 10 149 26 1861 10826 5045 204322 16825126
3: 101 51 727 2526 183553 1944347 28591923 43811049
4: 246 8479 3178 55779 5876126 19375679 67806346
5: 1685 849 813251 450553 29002021 8061827 2082929927
6: 22026 190453 200854 4100277 97447622 245990821 8996188226
7: 217077 826831 7507930 90557979
T(6, 5) = 245990821, T(5, 6) = 2082929927, and all numbers in antidiagonal 11 are larger than 10^8.
-
(* The function computes the least number in the specified interval *)
nsfRun[n_] := Module[{i=n}, While[!SquareFreeQ[i], i++]; i-n]
a270996[{low_, high_},{widthL_, widthR_}] := Module[{i=low, r, s, first=0}, While[i<=high, r=nsfRun[i]; If[r != widthL, i+=r+1, s=nsfRun[i+r+1]; If[s != widthR, If[s != widthL, i+=r+s+2, i+=r+1], first=i+r; i=high+1]]]; first]
a270996[{0, 5000},{2, 3}] (* computes a(18) = T(2, 3) *)
A242492
For any integer m > 1, the m-th term of the sequence is the minimal squarefree integer x with exactly m prime divisors such that x+1 and x+2 are also squarefree integers with exactly m prime divisors.
Original entry on oeis.org
33, 1309, 203433, 16467033, 1990586013, 41704979953, 102099792179229
Offset: 2
33 = 3*11, 34 = 2*17, 35 = 5*7;
1309 = 7*11*17, 1310 = 2*5*131, 1311 = 3*19*23;
203433 = 3*19*43*83, 203434 = 2*7*11*1321, 203435 = 5*23*29*61;
16467033 = 3*11*17*149*197, 16467034 = 2*19*23*83*227, 16467035 = 5*13*37*41*167; (CPU time 48 seconds)
1990586013 = 3*13*29*67*109*241, 1990586014 = 2*23*37*43*59*461, 1990586015 = 5*11*17*19*89*1259. (CPU time 2 hours and 34 minutes)
- Hugh L. Montgomery and Robert C. Vaughan: "Multiplicative Number Theory: 1. Classical Theory", Cambridge studies in advanced mathematics, vol. 97, Cambridge University Press (2007)
Cf.
A242605-
A242608 for start of triples of consecutive squarefree numbers with m=2,...,5 prime factors,
A242621 for the analog of the present sequence in that spirit.
-
{default(primelimit,2M); lb=2; ub=2*10^9; m=1; i=0; j=0; loc=0; while(m<6, m=m+1; for(n=lb,ub, if(issquarefree(n)&&(m==omega(n)), loc=loc+1; if(1==loc, i=n; ); if(2==loc, if(i+1==n, j=n; ); if(i+1
A373689
Perfect powers such that the three numbers before it and the three numbers after it are squarefree.
Original entry on oeis.org
4, 32, 36, 216, 256, 400, 900, 1156, 1296, 1764, 2704, 2916, 3136, 3600, 4356, 5184, 6084, 7056, 8100, 8464, 9216, 11236, 12996, 16384, 19044, 20164, 20736, 22500, 25600, 26244, 26896, 31684, 32400, 36864, 38416, 39204, 40000, 41616, 44100, 46656, 49284, 51984, 54756, 55696, 57600
Offset: 1
4 = 2^2 (between 1, 2 which is a prime number, 3 which is a prime number and 5 which is a prime number, 6 = 2 * 3 and 7 which is a prime number ).
32 = 2^5 (between 29 which is a prime number, 30 = 2 * 3 * 5, 31 which is a prime number and 33 = 3 * 11, 34 = 2 * 17 and 35 = 5 * 7).
36 = 2^2 * 3^2 (between 33 = 3 * 11, 34 = 2 * 17, 35 = 5 * 7 and 37 which is a prime number, 38 = 2 * 19 and 39 = 3 * 13).
-
Select[Range[60000], GCD @@ FactorInteger[#][[;; , 2]] > 1 && And @@ SquareFreeQ /@ (# + {-3, -2, -1, 1, 2, 3}) &] (* Amiram Eldar, Jun 13 2024 *)
A374393
Triangular numbers such that the three numbers before it and the three numbers after it are squarefree.
Original entry on oeis.org
36, 2016, 2556, 3240, 9180, 10296, 23220, 23436, 25200, 39060, 41616, 67896, 93096, 97020, 122760, 126756, 170820, 215496, 253116, 313236, 320400, 365940, 437580, 438516, 446040, 499500, 508536, 574056, 592416, 653796, 673380, 738720, 749700, 839160, 850860, 924120, 936396, 1024596, 1036080
Offset: 1
36 = 2^2 * 3^2 (the 8th triangular number) between 33 = 3 * 11, 34 = 2 * 17, 35 = 5 * 7 and 37 which is a prime number, 38 = 2 * 19 and 39 = 3 * 13.
2016 = 2^5 * 3^2 * 7 (the 63rd triangular number) between 2013 = 3 * 11 * 61, 2014 = 2 * 19 * 53, 2015 = 5 * 13 * 31 and 2017 which is a prime number, 2018 = 2 * 1009, 2019 = 3 * 673.
2556 = 2^2 * 3^2 * 71 (the 71st triangular number) between 2553 = 3 * 23 * 37, 2554 = 2 * 1277, 2555 = 5 * 7 * 73 and 2557 which is a prime number, 2558 = 2 * 1279, 2559 = 3 * 853.
-
Select[Accumulate[Range[1500]], And @@ (SquareFreeQ /@ (# + {-3, -2, -1, 1, 2, 3})) &] (* Amiram Eldar, Jul 07 2024 *)
Showing 1-6 of 6 results.
Comments