cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A226175 a(n) = A068336(n+1) - 1.

Original entry on oeis.org

1, 3, 5, 9, 11, 19, 21, 31, 37, 51, 53, 79, 81, 105, 121, 153, 155, 207, 209, 267, 293, 349, 351, 453, 465, 549, 587, 699, 701, 875, 877, 1031, 1089, 1247, 1279, 1547, 1549, 1761, 1847, 2137, 2139, 2529, 2531, 2887, 3041, 3395, 3397, 3973, 3995, 4501
Offset: 1

Views

Author

Gary W. Adamson, May 29 2013

Keywords

Comments

Row sums of triangle A160183.
Equals M * V, where M = A051731, the inverse Mobius transform and V = A068336: (1, 2, 4, 6, 10, 12, ...).

Examples

			a(6) = 19 = A068336(7) - 1 = (20 - 1).
a(6) = 19 = (1, 1, 1, 0, 0, 1) dot (1, 2, 4, 6, 10, 12) = (1 + 2 + 4 + 0 + 0 + 12); where (1, 1, 1, 0, 0, 1) = row 6 of triangle A051731.
		

Crossrefs

Cf. A068336 (Mobius transform), A160183, A051731, A054525.

Formula

a(n) = A068336(n+1) - 1

A003238 Number of rooted trees with n vertices in which vertices at the same level have the same degree.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 10, 11, 16, 19, 26, 27, 40, 41, 53, 61, 77, 78, 104, 105, 134, 147, 175, 176, 227, 233, 275, 294, 350, 351, 438, 439, 516, 545, 624, 640, 774, 775, 881, 924, 1069, 1070, 1265, 1266, 1444, 1521, 1698, 1699
Offset: 1

Views

Author

Keywords

Comments

Also, number of sequences of positive integers b_1, b_2, ..., b_k such that 1 + b_1*(1 + b_2*(...(1 + b_k) ... )) = n. If you take mu(b_1)*mu(b_2)*...*mu(b_k) for each sequence you get 1's 0's and -1's. Add them up and you get the terms for A007554. - Christian G. Bower, Oct 15 1998
Note that this applies also to planar rooted trees and other similar objects (mountain ranges, parenthesizations) encoded by A014486. - Antti Karttunen, Sep 07 2000
Equals sum of (n-1)-th row terms of triangle A152434. - Gary W. Adamson, Dec 04 2008
Equals the eigensequence of A051731, the inverse binomial transform. - Gary W. Adamson, Dec 26 2008
From Emeric Deutsch, Aug 18 2012: (Start)
The considered rooted trees are called generalized Bethe trees; in the Goldberg-Livshitz reference they are called uniform trees.
Also, a(n) = number of partitions of n-1 in which each part is divisible by the next. Example: a(5)=5 because we have 4, 31, 22, 211, and 1111.
There is a simple bijection between generalized Bethe trees with n+1 vertices and partitions of n in which each part is divisible by the next (the parts are given by the number of edges at the successive levels). We have the correspondences: number of edges --- sum of parts; root degree --- last part; number of leaves --- first part; height --- number of parts. (End)
a(n+1) = a(n) + 1 if and only if n is prime. - Jon Perry, Nov 24 2012
According to the MathOverflow link, log(a(n)) ~ log(4)*log(n)^2, and a more precise asymptotic expansion is similar to that of A018819 and hence A000123, so the conjecture in the Formula section is partly correct. - Andrey Zabolotskiy, Jan 22 2017

Examples

			a(4) = 3 because we have the path P(4), the tree Y, and the star \|/ . - _Emeric Deutsch_, Aug 18 2012
The planted achiral trees with up to 7 nodes are:
 1  -
 1  (-)
 2  (--),     ((-))
 3  (---),    ((--)),      (((-)))
 5  (----),   ((-)(-)),    ((---)),    (((--))),     ((((-))))
 6  (-----),  ((----)),    (((-)(-))), (((---))),    ((((--)))), (((((-)))))
10 (------), ((-)(-)(-)), ((--)(--)), (((-))((-))), ((-----)),  (((----))), ((((-)(-)))), ((((---)))), (((((--))))), ((((((-)))))). - _Gus Wiseman_, Jan 12 2017
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A122934 (offset by 1).

Programs

  • Haskell
    a003238 n = a003238_list !! (n-1)
    a003238_list = 1 : f 1 where
       f x = (sum (map a003238 $ a027750_row x)) : f (x + 1)
    -- Reinhard Zumkeller, Dec 20 2014
    
  • JavaScript
    a = new Array();
    for (i = 1; i < 50; i++) a[i] = 1;
    for (i = 3; i < 50; i++) for (j = 2; j < i; j++) if (i % j == 1) a[i] += a[j];
    document.write(a + "
    "); // Jon Perry, Nov 20 2012
  • Maple
    with(numtheory): aa := proc (n) if n = 0 then 1 else add(aa(divisors(n)[i]-1), i = 1 .. tau(n)) end if end proc: a := proc (n) options operator, arrow: aa(n-1) end proc: seq(a(n), n = 1 .. 48); # Emeric Deutsch, Aug 18 2012
    A003238:= proc(n) option remember; uses numtheory; add(A003238(m),m=divisors(n-1)) end proc;
    A003238(1):= 1;
    [seq(A003238(n),n=1..48)]; # Robert Israel, Mar 10 2014
  • Mathematica
    (* b = A068336 *) b[1] = 1; b[n_] := b[n] = 1 + Sum[b[k], {k, Divisors[n-1]}]; a[n_] := b[n]/2; a[1] = 1; Table[ a[n], {n, 1, 48}] (* Jean-François Alcover, Dec 20 2011, after Ralf Stephan *)
    achi[n_]:=If[n===1,1,Total[achi/@Divisors[n-1]]];Array[achi,50] (* Gus Wiseman, Jan 12 2017 *)
  • PARI
    seq(n) = {my(v=vector(n)); v[1]=1; for(i=2, n, v[i]=sumdiv(i-1, d, v[d])); v} \\ Andrew Howroyd, Jun 08 2025

Formula

Shifts one place left under inverse Moebius transform: a(n+1) = Sum_{k|n} a(k).
Conjecture: log(a(n)) is asymptotic to c*log(n)^2 where 0.4 < c < 0.5 - Benoit Cloitre, Apr 13 2004
For n > 1, a(n) = (1/2) * A068336(n) and Sum_{k = 1..n} a(k) = A003318(n). - Ralf Stephan, Mar 27 2004
Generating function P(x) for the sequence with offset 2 obeys P(x) = x^2*(1 + Sum_{n >= 1} P(x^n)/x^n). [Harary & Robinson]. - R. J. Mathar, Sep 28 2011
a(n) = 1 + sum of a(i) such that n == 1 (mod i). - Jon Perry, Nov 20 2012
From Ilya Gutkovskiy, Apr 28 2019: (Start)
G.f.: x * (1 + Sum_{n>=1} a(n)*x^n/(1 - x^n)).
L.g.f.: -log(Product_{n>=1} (1 - x^n)^(a(n)/n)) = Sum_{n>=1} a(n+1)*x^n/n. (End)

Extensions

Description improved by Christian G. Bower, Oct 15 1998

A339755 a(1) = 1; a(n+1) = 1 + Sum_{d|n} a(n/d) * a(d).

Original entry on oeis.org

1, 2, 5, 11, 27, 55, 131, 263, 571, 1168, 2445, 4891, 10113, 20227, 40979, 82229, 165632, 331265, 665365, 1330731, 2666729, 5334769, 10679319, 21358639, 42740683, 85482096, 171004645, 342015001, 684113793, 1368227587, 2736633741, 5473267483, 10946869669, 21893763789, 43788190107
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 15 2020

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; uses numtheory;
          1+add(a(d)*a((n-1)/d), d=divisors(n-1))
        end:
    seq(a(n), n=1..35);  # Alois P. Heinz, Dec 15 2020
  • Mathematica
    a[1] = 1; a[n_] := a[n] = 1 + Sum[a[(n - 1)/d] a[d], {d, Divisors[n - 1]}]; Table[a[n], {n, 1, 35}]

Formula

G.f.: x * (1/(1 - x) + Sum_{i>=1} Sum_{j>=1} a(i) * a(j) * x^(i*j)).
a(n) ~ c * 2^n, where c = 1.27442410710035207761153205319824525254716841098942446508584158048310907298... - Vaclav Kotesovec, Dec 16 2020

A343371 a(n) = 1 + Sum_{d|n, d < n} a(d - 1).

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 5, 2, 5, 4, 6, 2, 9, 2, 8, 7, 7, 2, 12, 2, 12, 9, 9, 2, 13, 5, 12, 9, 12, 2, 22, 2, 14, 10, 10, 10, 18, 2, 15, 13, 16, 2, 26, 2, 20, 20, 12, 2, 22, 7, 23, 11, 19, 2, 26, 11, 23, 16, 15, 2, 30, 2, 25, 26, 16, 14, 36, 2, 22, 13, 27, 2, 32, 2, 21, 28
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 12 2021

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;
          1+add(a(d-1), d=numtheory[divisors](n) minus {n})
        end:
    seq(a(n), n=0..75);  # Alois P. Heinz, Apr 12 2021
  • Mathematica
    a[n_] := a[n] = 1 + Sum[If[d < n, a[d - 1], 0], {d, Divisors[n]}]; Table[a[n], {n, 0, 75}]
    nmax = 75; A[] = 0; Do[A[x] = 1/(1 - x) + Sum[x^k A[x^k], {k, 2, nmax}] + O[x]^(nmax + 1) //Normal, nmax + 1]; CoefficientList[A[x], x]

Formula

G.f. A(x) satisfies: A(x) = 1 / (1 - x) + x^2 * A(x^2) + x^3 * A(x^3) + x^4 * A(x^4) + ...

A068334 a(1) = 1; a(n+1) = 1 + Product_{k|n} a(k), product is over the positive divisors, k, of n.

Original entry on oeis.org

1, 2, 3, 4, 9, 10, 61, 62, 497, 1492, 26857, 26858, 6445921, 6445922, 786402485, 21232867096, 10531502079617, 10531502079618, 314049392014208761, 314049392014208762, 33736441887734362049089, 6173768865455388254983288
Offset: 1

Views

Author

Leroy Quet, Feb 27 2002

Keywords

Examples

			a(7) = 1 + a(1)*a(2)*a(3)*a(6) = 1 + 1*2*3*10 = 61.
		

Crossrefs

Programs

  • Mathematica
    Nest[Append[#1, 1 + Times @@ #1[[Divisors[#2] ]] ] & @@ {#, Length[#]} &, {1}, 21] (* Michael De Vlieger, Apr 13 2021 *)
  • PARI
    lista(nn) = {my(va = vector(nn)); va[1] = 1; for (n=2, nn, my(d=divisors(n-1)); va[n] = 1 + prod(k=1, #d, va[d[k]]);); va;} \\ Michel Marcus, Apr 13 2021

A160183 Triangle, read by rows, obtained by dropping right diagonal from A160182.

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 5, 2, 1, 1, 6, 2, 1, 1, 1, 10, 4, 2, 1, 1, 1, 11, 4, 2, 1, 1, 1, 1, 16, 6, 3, 2, 1, 1, 1, 1, 19, 7, 4, 2, 1, 1, 1, 1, 1, 26, 10, 5, 3, 2, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gary W. Adamson, May 03 2009

Keywords

Comments

A054525 * A160183 = triangle A160182. Mobius transform A054525 of the triangle shifts to the left adding I, I = Identity matrix.
Left border = A003238 starting (1, 2, 3, 5, 6, 10, 11, 16, 19,...).

Examples

			First few rows of the triangle =
1;
2, 1;
3, 1, 1;
5, 2, 1, 1;
6, 2, 1, 1, 1;
10, 4, 2, 1, 1, 1;
11, 4, 2, 1, 1, 1, 1;
16, 6, 3, 2, 1, 1, 1, 1;
19, 7, 4, 2, 1, 1, 1, 1, 1;
26, 10, 5, 3, 2, 1, 1, 1, 1, 1;
...
		

Crossrefs

Formula

A054525 * triangle A160182, also obtained by shifting triangle A160182 to the right, deleting the (1,1,1,...) right border.

A160182 Triangle read by rows, 1 / ((-1)*A129184 * A051731 + I), I = Identity matrix.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 5, 2, 1, 1, 1, 6, 2, 1, 1, 1, 1, 10, 4, 2, 1, 1, 1, 1, 11, 4, 2, 1, 1, 1, 1, 1, 16, 6, 3, 2, 1, 1, 1, 1, 1, 19, 7, 4, 2, 1, 1, 1, 1, 1, 1, 26, 10, 5, 3, 2, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gary W. Adamson, May 03 2009

Keywords

Comments

Inverse mobius transform (A051731) * the triangle shifts row terms to the right deleting the right border, getting triangle A160183: (1; 2,1; 3,1,1; 5,2,1,1;...).

Examples

			First few rows of the triangle:
   1;
   1,  1;
   2,  1,  1;
   3,  1,  1,  1;
   5,  2,  1,  1,  1;
   6,  2,  1,  1,  1,  1;
  10,  4,  2,  1,  1,  1,  1;
  11,  4,  2,  1,  1,  1,  1,  1;
  16,  6,  3,  2,  1,  1,  1,  1,  1;
  19,  7,  4,  2,  1,  1,  1,  1,  1,  1;
  26, 10,  5,  3,  2,  1,  1,  1,  1,  1,  1;
  ...
		

Crossrefs

Row sums = A068336. Left border = A003238.

Programs

  • Maple
    A160182den := proc(n,k)
        a := add( A129184(n,i)*A051731(i,k),i=1..n) ;
        if n =k then
            -a+1 ;
        else
            -a;
        end if;
    end proc:
    N := 20 :
    M := Matrix(N,N) :
    for n from 1 to N do
    for k from 1 to N do
        M[n,k] := A160182den(n,k) ;
    end do:
    end do:
    MatrixInverse(M) ;  # R. J. Mathar, Aug 04 2015

Formula

Triangle read by rows, 1 / ((-1)*A129184 * A051731 + I), I = Identity matrix. The operations shift the inverse Mobius transform (A051731) down, changing the signs to (-1), then add I = (1,1,1,...) as the right border.

A290845 a(1) = 1; a(n) = Sum_{k=1..n} a(ceiling((n-1)/k)).

Original entry on oeis.org

1, 2, 4, 8, 14, 24, 36, 56, 78, 110, 148, 200, 254, 334, 416, 522, 644, 798, 954, 1162, 1372, 1640, 1934, 2284, 2636, 3090, 3556, 4106, 4694, 5394, 6096, 6972, 7850, 8882, 9972, 11220, 12500, 14048, 15598, 17360, 19208, 21346, 23486, 26016, 28548, 31436, 34478, 37874, 41272, 45246
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 12 2017

Keywords

Examples

			a(1) = 1;
a(2) = a(ceiling(1/1)) + a(ceiling(1/2)) = a(1) + a(1) = 2;
a(3) = a(ceiling(2/1)) + a(ceiling(2/2)) + a(ceiling(2/3)) = a(2) + a(1) + a(1) = 4, etc.
		

Crossrefs

Cf. A003318, A025523, A068336 (first differences), A078346.

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = Sum[a[Ceiling[(n - 1)/k]], {k, 1, n}]; Table[a[n], {n, 50}]
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A290845(n):
        if n == 1:
            return 1
        c, j, k1 = n, 1, n-2
        while k1 > 1:
            j2 = (n-2)//k1 + 1
            c += (j2-j)*A290845(k1+1)>>1
            j, k1 = j2, (n-2)//j2
        return c-j<<1 # Chai Wah Wu, Apr 29 2025

Formula

a(n) = 2*A003318(n-1) for n > 1.

A346117 a(1) = a(2) = 1; a(n+2) = 1 + Sum_{d|n} a(d).

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 6, 11, 8, 17, 12, 24, 14, 38, 16, 47, 24, 64, 26, 83, 28, 110, 38, 125, 40, 174, 46, 191, 58, 241, 60, 289, 62, 353, 78, 380, 90, 490, 92, 519, 110, 640, 112, 723, 114, 851, 146, 892, 148, 1113, 156, 1177, 184, 1371, 186, 1500, 204, 1752, 234, 1813
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 05 2021

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) option remember; local d; 1 + add(procname(d), d = numtheory:-divisors(n-2)) end proc:
    f(1):= 1: f(2):= 1:
    map(f, [$1..60]); # Robert Israel, Dec 02 2022
  • Mathematica
    a[1] = a[2] = 1; a[n_] := a[n] = 1 + Sum[a[d], {d, Divisors[n - 2]}]; Table[a[n], {n, 1, 60}]
    nmax = 60; A[] = 0; Do[A[x] = x + x^2 (1/(1 - x) + Sum[A[x^k], {k, 1, nmax}]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest

Formula

G.f. A(x) satisfies: A(x) = x + x^2 * (1 / (1 - x) + A(x) + A(x^2) + A(x^3) + ...).

A345140 a(1) = 1; a(n+1) = n + Sum_{d|n} a(d).

Original entry on oeis.org

1, 2, 5, 9, 16, 22, 36, 44, 64, 79, 108, 120, 171, 185, 238, 275, 347, 365, 477, 497, 624, 687, 820, 844, 1071, 1113, 1313, 1410, 1671, 1701, 2094, 2126, 2489, 2636, 3020, 3108, 3732, 3770, 4288, 4504, 5192, 5234, 6151, 6195, 7046, 7415, 8284, 8332, 9702, 9788, 11007, 11411, 12759, 12813, 14639
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 09 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = n - 1 + Sum[a[d], {d, Divisors[n - 1]}]; Table[a[n], {n, 1, 55}]
    nmax = 55; A[] = 0; Do[A[x] = x (1 + x/(1 - x)^2 + Sum[A[x^k], {k, 1, nmax}]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest

Formula

G.f. A(x) satisfies: A(x) = x * (1 + x / (1 - x)^2 + A(x) + A(x^2) + A(x^3) + ...).
Showing 1-10 of 11 results. Next