A068497 Primes p such that 2*p+1 and 2*p-1 are composites.
13, 17, 43, 47, 59, 61, 67, 71, 73, 101, 103, 107, 109, 127, 137, 149, 151, 163, 167, 181, 193, 197, 223, 227, 241, 257, 263, 269, 277, 283, 311, 313, 317, 347, 349, 353, 373, 383, 389, 397, 401, 409, 421, 433, 449, 457, 461, 463, 467, 479, 487, 503, 521
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Programs
-
GAP
Filtered([1..530],p->IsPrime(p) and not IsPrime(2*p+1) and not IsPrime(2*p-1)); # Muniru A Asiru, Oct 16 2018
-
Magma
[p: p in PrimesUpTo(600) | not IsPrime(2*p+1) and not IsPrime(2*p-1)]; // Vincenzo Librandi, Jan 20 2015
-
Maple
select(p->isprime(p) and not isprime(2*p+1) and not isprime(2*p-1),[$1..530]); # Muniru A Asiru, Oct 16 2018
-
Mathematica
lst={};Do[p=Prime[n];If[ !PrimeQ[2*p-1]&&!PrimeQ[2*p+1],AppendTo[lst,p]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, May 12 2010 *) Select[Prime[Range[500]], ! PrimeQ[2*# - 1] && ! PrimeQ[2*# + 1] &] (* G. C. Greubel, Oct 15 2018 *)
-
PARI
listp(nn) = {forprime(p=2, nn, if (!isprime(2*p-1) && !isprime(2*p+1), print1(p, ", ")););} \\ Michel Marcus, Jan 12 2015
Comments