cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068497 Primes p such that 2*p+1 and 2*p-1 are composites.

Original entry on oeis.org

13, 17, 43, 47, 59, 61, 67, 71, 73, 101, 103, 107, 109, 127, 137, 149, 151, 163, 167, 181, 193, 197, 223, 227, 241, 257, 263, 269, 277, 283, 311, 313, 317, 347, 349, 353, 373, 383, 389, 397, 401, 409, 421, 433, 449, 457, 461, 463, 467, 479, 487, 503, 521
Offset: 1

Views

Author

Benoit Cloitre, Mar 25 2002

Keywords

Comments

Subsequence of A053176. - Michel Marcus, Jan 12 2015
The sequence is infinite. Among others it contains all the primes of the form 15m+/-2. - Emmanuel Vantieghem, Sep 19 2016

Programs

  • GAP
    Filtered([1..530],p->IsPrime(p) and not IsPrime(2*p+1) and not IsPrime(2*p-1)); # Muniru A Asiru, Oct 16 2018
  • Magma
    [p: p in PrimesUpTo(600) | not IsPrime(2*p+1) and not IsPrime(2*p-1)]; // Vincenzo Librandi, Jan 20 2015
    
  • Maple
    select(p->isprime(p) and not isprime(2*p+1) and not isprime(2*p-1),[$1..530]); # Muniru A Asiru, Oct 16 2018
  • Mathematica
    lst={};Do[p=Prime[n];If[ !PrimeQ[2*p-1]&&!PrimeQ[2*p+1],AppendTo[lst,p]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, May 12 2010 *)
    Select[Prime[Range[500]], ! PrimeQ[2*# - 1] && ! PrimeQ[2*# + 1] &] (* G. C. Greubel, Oct 15 2018 *)
  • PARI
    listp(nn) = {forprime(p=2, nn, if (!isprime(2*p-1) && !isprime(2*p+1), print1(p, ", ")););} \\ Michel Marcus, Jan 12 2015